Write your name here Surname	Other nam	es
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Core Math Advanced Subsidiar		C1
Monday 13 January 2014 – Time: 1 hour 30 minutes	Morning	Paper Reference 6663A/01
You must have:		Total Marks

Calculators may NOT be used in this examination.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

		$\overline{}$
1 Cimalify fully		
1. Simplify fully		
(-1)2		
(a) $(2\sqrt{x})^2$		
	(1)	
	(1)	
$5 + \sqrt{7}$		
(b) 		
(b) $\frac{5+\sqrt{7}}{2+\sqrt{7}}$	(2)	
	(3)	

1	
L	•

$$y = 2x^2 - \frac{4}{\sqrt{x}} + 1, \qquad x > 0$$

(a) Find $\frac{dy}{dx}$, giving each term in its simplest form.

(3)

(b) Find $\frac{d^2y}{dx^2}$, giving each term in its simplest form.

(2)

	x-2y	y - 1 = 0	
	$x^2 + 4y^2 -$	10x + 9 = 0	
	$\mathcal{N} + \exists y$	10% 1 9 0	(7

4.

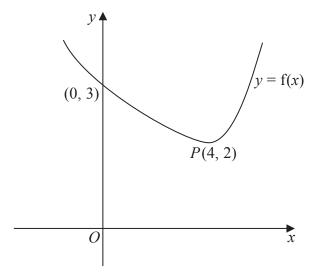


Figure 1

Figure 1 shows a sketch of a curve with equation y = f(x).

The curve crosses the y-axis at (0, 3) and has a minimum at P(4, 2).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x+4)$$
, (2)

(b)
$$y = 2f(x)$$
. (2)

On each diagram, show clearly the coordinates of the minimum point and any point of intersection with the *y*-axis.

5. Given that for all positive integers n,

$$\sum_{r=1}^{n} a_r = 12 + 4n^2$$

(a) find the value of $\sum_{r=1}^{5} a_r$

(2)

(b) Find the value of a_6

(3)

10

Leave blank

6.

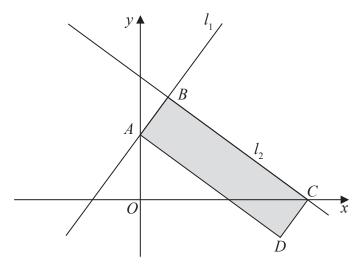


Figure 2

The straight line l_1 has equation 2y = 3x + 7

The line l_1 crosses the y-axis at the point A as shown in Figure 2.

- (a) (i) State the gradient of l_1
 - (ii) Write down the coordinates of the point A.

(2)

Another straight line l_2 intersects l_1 at the point B (1, 5) and crosses the x-axis at the point C, as shown in Figure 2.

Given that $\angle ABC = 90^{\circ}$,

(b) find an equation of l_2 in the form ax + by + c = 0, where a, b and c are integers. (4)

The rectangle ABCD, shown shaded in Figure 2, has vertices at the points A, B, C and D.

(c) Find the exact area of rectangle ABCD.

(5)

estion 6 continued	

7. Shelim starts his new job on a salary of £14000. He will receive a rise of £1500 a year for each full year that he works, so that he will have a salary of £15500 in year 2, a salary of £17000 in year 3 and so on. When Shelim's salary reaches £26000, he will receive no more rises. His salary will remain at £26000.
(a) Show that Shelim will have a salary of £26 000 in year 9.
(2)
(b) Find the total amount that Shelim will earn in his job in the first 9 years. (2)
Anna starts her new job at the same time as Shelim on a salary of £ A . She receives a rise of £1000 a year for each full year that she works, so that she has a salary of £ $(A + 1000)$ in year 2, £ $(A + 2000)$ in year 3 and so on. The maximum salary for her job, which is reached in year 10, is also £26000.
(c) Find the difference in the total amount earned by Shelim and Anna in the first 10 years.
(6)

nestion 7 continued	

The equation $2x^2 + 2kx + (k+2) = 0$, where k is a constant, ha	is two distinct real roots.
(a) Show that k satisfies	
$k^2 - 2k - 4 > 0$	(2)
	(3
(b) Find the set of possible values of k .	(4
	(4

9. A curve with equation y = f(x) passes through the point (3, 6). Given that

$$f'(x) = (x - 2)(3x + 4)$$

- (a) use integration to find f(x). Give your answer as a polynomial in its simplest form. (5)
- (b) Show that $f(x) \equiv (x-2)^2(x+p)$, where p is a positive constant. State the value of p. (3)
- (c) Sketch the graph of y = f(x), showing the coordinates of any points where the curve touches or crosses the coordinate axes.

(4)

Question 9 continued	Leave

estion 9 continued		

Question 9 continued	Leave blank
Question 9 continued	
	Q9
(Total 12 marks)	

10. The curve <i>C</i> has equation $y = x^3 - 2x^2 - x + 3$				
The point P , which lies on C , has coordinates $(2, 1)$.				
(a) Show that an equation of the tangent to C at the point P is $y = 3x - 5$				
The point Q also lies on C .				
Given that the tangent to C at Q is parallel to the tangent to C at P ,				
(b) find the coordinates of the point Q .	(5)			

	Q