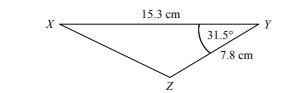

$B = 26^{\circ} C$ 16 cm A = C

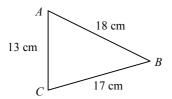
The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Use the sine rule to find the length *AC* to 3 significant figures.

2

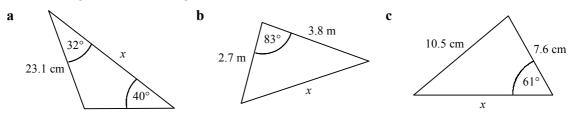

C2

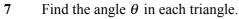
1

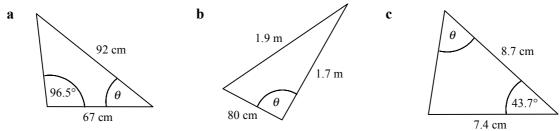
The diagram shows triangle *PQR* in which *PQ* = 8.2 cm, *PR* = 11.4 cm and $\angle PQR = 57^{\circ}$. Use the sine rule to find the size of $\angle PRQ$ in degrees to 1 decimal place.


3 In triangle *ABC*, AB = 16.2 cm, BC = 12.3 cm and $\angle BAC = 37^{\circ}$. Find the two possible sizes of $\angle ACB$ and the corresponding lengths of *AC*.

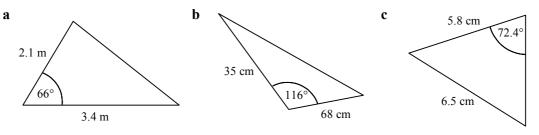
The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Use the cosine rule to find the length XZ.

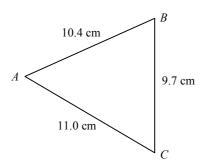

5


4

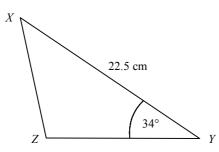


The diagram shows triangle *ABC* in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Use the cosine rule to find the size of $\angle ACB$.

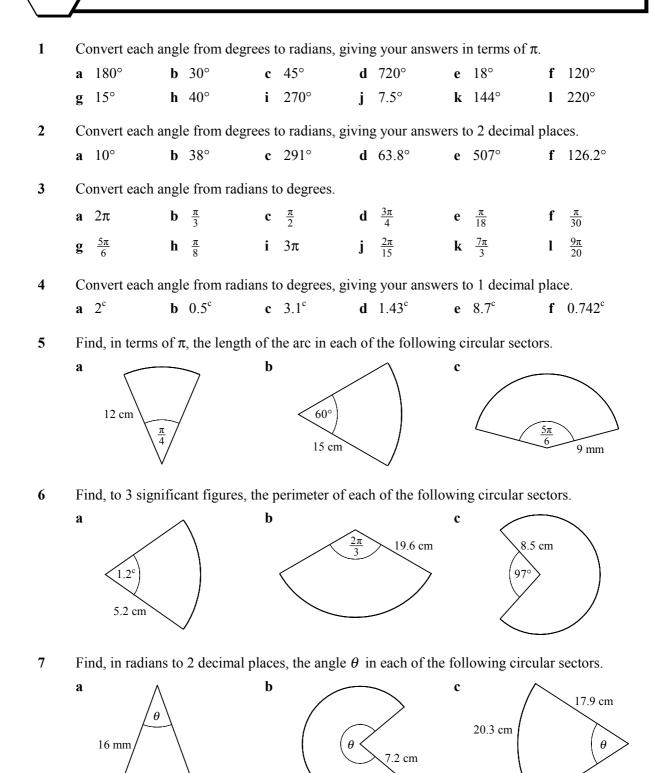

6 Find the length *x* in each triangle.



8 Find the area of each of the following triangles.


- 9 Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
 - a Calculate how far Joanne is from the point where she started.
 - **b** Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.
- A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
 Find the distance between the two vessels and the bearing of the cargo ship from the ferry.

11


The diagram shows triangle *ABC* in which AB = 10.4 cm, AC = 11.0 cm and BC = 9.7 cm. Find the area of the triangle to 3 significant figures.

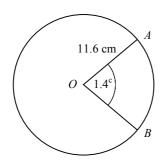
The diagram shows triangle *XYZ* in which XY = 22.5 cm and $\angle XYZ = 34^{\circ}$. Given that the area of the triangle is 100 cm², find the length *XZ*.

C2


8 The minor arc *AB* of a circle, centre *O*, has length 46.2 cm. Given that $\angle AOB = 78.5^{\circ}$, find

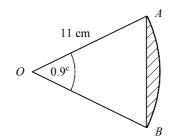
11 mm

a the distance *OA*, **b** the perimeter of sector *OAB*.

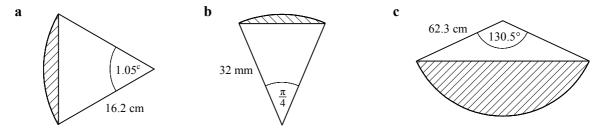

35 cm

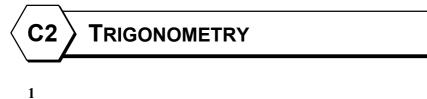
9 Find, in cm^2 to 1 decimal place, the area of each of the following circular sectors.

- 10 PQ is an arc of a circle of radius 8 cm, centre O.Given that arc PQ has length 12 cm, find
 - **a** the angle, in radians, subtended by *PQ* at *O*,
 - **b** the area of sector *OPQ*.



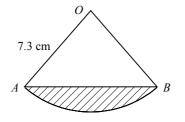
The diagram shows a circle of radius 11.6 cm, centre *O*. The arc of the circle *AB* subtends an angle of 1.4 radians at *O*. Find, to 3 significant figures,


- **a** the perimeter of the minor sector *OAB*,
- **c** the area of the minor sector *OAB*,
- **b** the perimeter of the major sector *OAB*,
- OAB, **d** the area of the major sector OAB.


12

The diagram shows a circular sector *OAB*. Find the area of

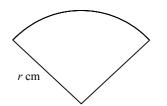
- **a** the sector OAB, **b** the triangle OAB,
- **c** the shaded segment.
- 13 Find the area of the shaded segment in each of the following circular sectors.



12.6 cm

The diagram shows a sector of a circle of radius 12.6 cm. Given that the perimeter of the sector is 31.7 cm, find its area.

2

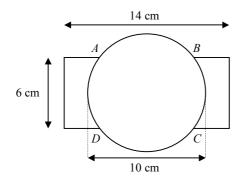


The diagram shows a sector *OAB* of a circle, centre *O* and radius 7.3 cm.

Given that the area of the sector is 38.4 cm^2 , find

- **a** the size of $\angle AOB$ in radians,
- **b** the perimeter of the shaded segment.

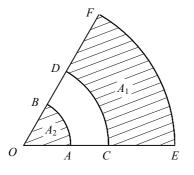
3


The diagram shows a sector of a circle of radius r cm. The area of the sector is 40 cm².

- **a** Show that the perimeter of the sector is $(2r + \frac{80}{r})$ cm.
- **b** Hence find the set of values of r for which the perimeter of the sector is less than 26 cm.
- 4

The diagram shows three circles with centres A, B and C, and radii 4 cm, 6 cm and 2 cm respectively. Each circle touches the other two circles.

- **a** Prove that triangle *ABC* is a right-angled triangle.
- **b** Find $\angle ABC$ in radians to 2 decimal places.
- **c** Show that the area of the shaded region enclosed by the three circles is 1.86 cm² to 3 significant figures.

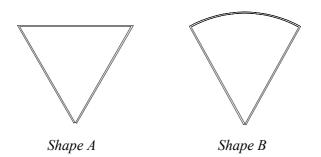


The diagram shows a company logo which consists of a circle of diameter 10 cm drawn on top of a rectangle measuring 6 cm by 14 cm. The centres of the circle and rectangle are coincident and the two shapes intersect at A, B, C and D.

- **a** Find the length of the chord of the circle AB.
- **b** Show that the perimeter of the logo is 42.5 cm to 3 significant figures.
- **c** Find the area of the logo.

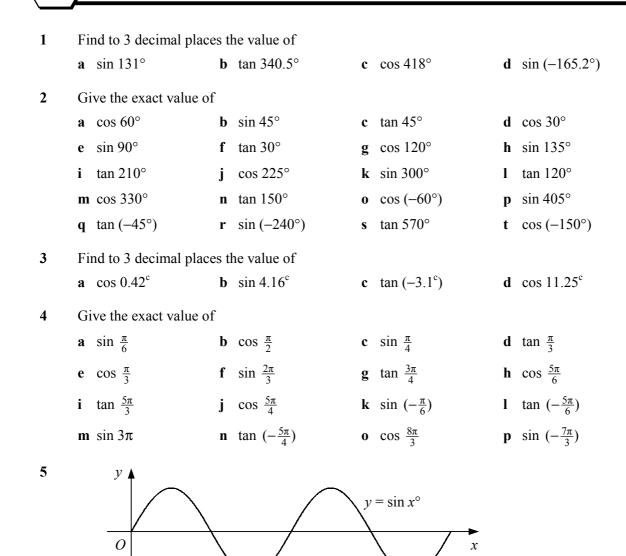
6

5



AB, *CD* and *EF* are arcs of concentric circles, centre *O*, such that *OACE* and *OBDF* are straight lines as shown in the diagram. The area of the shaded region *CEFD* is denoted by A_1 and the area of the shaded sector *OAB* by A_2 .

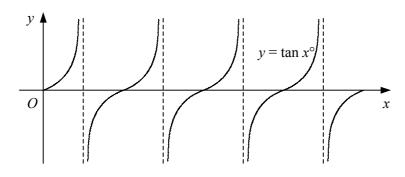
Given that OA = r cm, AC = 2 cm, OE = 8 cm and $\angle AOB = \theta$ radians,


- **a** find an expression for A_1 in terms of r and θ .
- Given also that $A_1 = 7A_2$,
- **b** show that r = 2.5

7

A girl is playing with a paper clip. She straightens the wire and then bends it to form an equilateral triangle, *Shape A* above. She then curves one side of the triangle to form a sector of a circle, *Shape B* above.

Find, to 1 decimal place, the percentage change in the area enclosed by the paper clip when it is changed from *Shape A* to *Shape B*, indicating whether this is an increase or decrease.


The graph shows the curve $y = \sin x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the coordinates of the turning points of the curve.

6

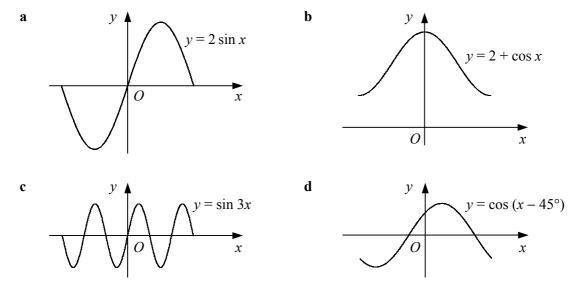
C2

TRIGONOMETRY

The graph shows the curve $y = \tan x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the equations of the asymptotes.

7 Describe the transformation that maps the graph of $y = \sin x^\circ$ onto the graph of


a
$$y = 3 \sin x^{\circ}$$
 b $y = \sin 4x^{\circ}$ **c** $y = \sin (x + 60)^{\circ}$ **d** $y = \sin (-x^{\circ})$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \le x \le 360^\circ$.

a $y = \cos x$	and	$y = 3 \cos x$	b $y = \sin x$	and	$y = \sin\left(x - 30^\circ\right)$
c $y = \cos x$	and	$y = \cos 2x$	d $y = \tan x$	and	$y = 2 + \tan x$
$e y = \sin x$	and	$y = -\sin x$	$\mathbf{f} y = \cos x$	and	$y = \cos\left(x + 60^\circ\right)$
g $y = \tan x$	and	$y = \tan \frac{1}{2}x$	h $y = \sin x$	and	$y = 1 + \sin x$

9 Each curve is shown for the interval $-180^\circ \le x \le 180^\circ$.

Write down the coordinates of the turning points of each curve in this interval.

10 Write down the period of each of the following graphs.

a $y = \sin x^{\circ}$	b $y = \tan x^{\circ}$	$\mathbf{c} y = 2\cos x^{\circ}$
d $y = \sin 2x^{\circ}$	$e y = \tan (x + 30)^\circ$	f $y = \cos \frac{1}{3}x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.

a $y = \tan x^{\circ}$	b $y = \cos(x+30)^\circ$	$\mathbf{c} y = \sin 2x^{\circ}$
$\mathbf{d} y = 1 + \cos x^{\circ}$	$e y = \sin \frac{1}{2}x^{\circ}$	$\mathbf{f} y = \tan \left(x + 90 \right)^{\circ}$
$\mathbf{g} y = \sin \left(x - 45 \right)^{\circ}$	h $y = -\tan x^{\circ}$	$\mathbf{i} y = \cos \left(x - 120 \right)^\circ$

12 Sketch each of the following curves for x in the interval $0 \le x \le 2\pi$. Show the coordinates of any turning points and the equations of any asymptotes.

a $y = \cos x$	b $y = 3 \sin x$	c $y = \tan 2x$
$\mathbf{d} y = \sin\left(x - \frac{\pi}{3}\right)$	$e y = \cos \frac{1}{3}x$	$\mathbf{f} y = \sin x - 2$
$\mathbf{g} y = \tan\left(x + \frac{\pi}{4}\right)$	h $y = \sin \frac{3}{4}x$	i $y = \cos\left(x - \frac{\pi}{6}\right)$

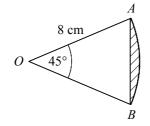
C2

1	Find all values of x in the interval $0 \le x \le 360^\circ$ such that			
	a $\sin x = \frac{1}{2}$ b $\tan x$	$\mathbf{n} x = \sqrt{3} \qquad \mathbf{c} \cos x = 0$	$\mathbf{d} \sin x = -1$	
	$\mathbf{e} \cos x = \frac{\sqrt{3}}{2} \qquad \mathbf{f} \sin x = \frac{\sqrt{3}}{2}$	$f_{1x} = \frac{1}{\sqrt{2}}$ g $\tan x = -1$	h $\cos x = -\frac{1}{2}$	
	i $\sin x = -\frac{\sqrt{3}}{2}$ j tar	$h x = \frac{1}{\sqrt{3}}$ $k \cos x = -\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$ I $\tan x = -\sqrt{3}$	
2	Solve each equation for θ in t	the interval $0 \le \theta \le 360^\circ$ giving	g your answers to 1 decimal place.	
	a $\cos \theta = 0.4$ b sin	$\mathbf{e} = 0.27$ $\mathbf{c} \tan \theta = 1.6$	6 d $\sin \theta = 0.813$	
	$e \tan \theta = 0.1$ $f \cos \theta$	$\mathbf{s} \ \boldsymbol{\theta} = 0.185$ $\mathbf{g} \ \sin \boldsymbol{\theta} = -0$	h $\tan \theta = -0.7$	
	i $\cos \theta = -0.39$ j tar	$\mathbf{h} \ \theta = -3.4$ $\mathbf{k} \ \cos \theta = -0.4$	0.636 l $\sin \theta = -0.203$	
3	Solve each equation for x in the second s	he interval $0 \le x \le 360$.		
	Give your answers to 1 decim	al place where appropriate.		
	a $\sin(x-60)^\circ = 0.5$	b $\tan(x+30)^\circ = 1$	c $\cos(x-45)^\circ = 0.2$	
	d $\tan(x+30)^\circ = 0.78$	e $\cos(x+45)^\circ = -0.5$	f $\sin(x-60)^\circ = -0.89$	
	g $\cos(x+45)^\circ = 0.9$	h $\sin(x+30)^\circ = 0.14$	i $\cos(x-60)^\circ = 0.6$	
	j $\sin(x-30)^\circ = -0.3$	k $\tan(x-60)^\circ = -1.26$	$1 \sin 2x^\circ = 0.5$	
	$\mathbf{m} \cos 2x^\circ = 0.64$	$\mathbf{n} \sin 2x^\circ = -0.18$	o $\tan 2x^\circ = -2.74$	
	p sin $\frac{1}{2}x^{\circ} = 0.703$	q $\tan 3x^\circ = 0.591$	r $\cos 2x^\circ = -0.415$	
4	Solve each equation for x in the function of x in the function of x is the function of x in the function of x is the function of x in the function of x is the function	he interval $0 \le x \le 2\pi$ giving ye	our answers in terms of π .	
	a $\sin x = 0$	b $\cos x = \frac{1}{2}$	c $\tan x = 1$	
	$\mathbf{d} \cos x = -1$	e $\tan x = -\frac{1}{\sqrt{3}}$	$\mathbf{f} \sin x = -\frac{1}{\sqrt{2}}$	
	$g \tan\left(x + \frac{\pi}{6}\right) = \sqrt{3}$	h $\sin(x - \frac{\pi}{4}) = \frac{1}{2}$	i $\cos(x + \frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$	
	j $\sin(x + \frac{\pi}{3}) = \frac{1}{\sqrt{2}}$	$\mathbf{k} \cos 2x = -\frac{1}{\sqrt{2}}$	l $\tan 3x = \frac{1}{\sqrt{3}}$	
5	Solve each equation for θ in t	the interval $-180^\circ \le \theta \le 180^\circ$.		
	Give your answers to 1 decim	al place where appropriate.		
	a $\cos \theta = 0$	b $\tan 2\theta + 1 = 0$	c $\sin(\theta + 60^\circ) = 0.291$	

a $\cos \theta = 0$	b $\tan 2\theta + 1 = 0$	$\mathbf{c} \sin\left(\theta + 60^\circ\right) = 0.291$
d $2 \tan (\theta - 15^\circ) = 3.7$	$e \sin 2\theta - 0.3 = 0$	f $4\cos 3\theta = 2$
g $1 + \sin(\theta + 110^\circ) = 0$	h $5\cos(\theta - 27^\circ) = 3$	i $7-3 \tan \theta = 0$
$\mathbf{j} 3 + 8\cos 2\theta = 0$	$\mathbf{k} 2 + 6 \tan\left(\theta + 92^\circ\right) = 0$	$1 1 - 4\sin \frac{1}{3}\theta = 0$

6 Solve each equation for x in the interval $0 \le x \le 180^\circ$. Give your answers to 1 decimal place where appropriate. **a** $\tan(2x+30^\circ) = 1$ **b** $\sin(2x-15^{\circ})=0$ **c** $\cos(2x+70^\circ) = 0.5$ **d** $\sin(2x + 210^\circ) = 0.26$ **e** $\cos(2x - 38^\circ) = -0.64$ **f** $\tan(2x - 56^\circ) = -0.32$ **g** $\cos(3x - 24^\circ) = 0.733$ **h** $\tan(3x + 60^\circ) = -1.9$ i $\sin\left(\frac{1}{2}x + 18^\circ\right) = 0.572$ 7 Solve each equation for x in the interval $0 \le x \le 2\pi$, giving your answers to 2 decimal places. **c** $\sin(x + \frac{\pi}{4}) = 0.7$ **a** $\tan x = 0.52$ **b** $\cos 2x = 0.315$ **f** $\tan 2x = -0.225$ **d** $3\cos x + 1 = 0$ **e** $\sin \frac{1}{2}x = 0.09$ **g** $3-4\sin(x-\frac{\pi}{3})=0$ **h** $\tan(2x+\frac{\pi}{6})=2$ **i** $\cos 3x=-0.81$ **k** $\cos(2x - \frac{\pi}{2}) = -0.34$ **l** $1 + 6\sin 2x = 0$ $j \quad 5 + 3 \tan x = 0$ 8 **a** Solve the equation $2v^2 - 3v + 1 = 0.$ **b** Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $2\sin^2 x - 3\sin x + 1 = 0$. Solve each equation for θ in the interval $0 \le \theta \le 360$. 9 Give your answers to 1 decimal place where appropriate. a $\sin^2 \theta^\circ = 0.75$ **b** $1 - \tan^2 \theta^\circ = 0$ c $2\cos^2\theta^\circ + \cos\theta^\circ = 0$ **d** sin $\theta^{\circ}(4\cos\theta^{\circ}-1)=0$ e $4\sin\theta^\circ = \sin\theta^\circ \tan\theta^\circ$ f $(2\cos\theta^{\circ}-1)(\cos\theta^{\circ}+1)=0$ **g** $\tan^2 \theta^\circ - 3 \tan \theta^\circ + 2 = 0$ **h** $3\sin^2\theta^\circ - 7\sin\theta^\circ + 2 = 0$ i $\tan^2 \theta^{\circ} - \tan \theta^{\circ} = 6$ i $6\cos^2\theta^\circ - \cos\theta^\circ - 2 = 0$ **k** $4\sin^2\theta^\circ + 3 = 8\sin\theta^\circ$ $\mathbf{I} \quad \cos^2 \theta^\circ + 2 \cos \theta^\circ - 1 = 0$ **m** $\tan^2 \theta^\circ + 3 \tan \theta^\circ - 1 = 0$ **n** $3\sin^2\theta^\circ + \sin\theta^\circ = 1$ 10 **a** Sketch the curve $y = \cos x^{\circ}$ for x in the interval $0 \le x \le 360$. **b** Sketch on the same diagram the curve $y = \cos(x + 90)^{\circ}$ for x in the interval $0 \le x \le 360$. **c** Using your diagram, find all values of x in the interval $0 \le x \le 360$ for which $\cos x^{\circ} = \cos (x + 90)^{\circ}$. **a** Sketch the curves $y = \cos x^{\circ}$ and $y = \cos 3x^{\circ}$ on the same set of axes for x in the 11 interval $0 \le x \le 360$. **b** Solve, for x in the interval $0 \le x \le 360$, the equation $\cos x^{\circ} = \cos 3x^{\circ}$. **c** Hence solve, for x in the interval $0 \le x \le 180$, the equation $\cos 2x^\circ = \cos 6x^\circ$.

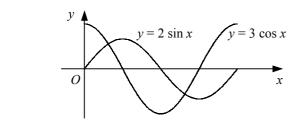
C2


1	a Given that $4 \sin x + \cos x = 0$, show that	$\tan x = -\frac{1}{4}.$			
		Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which			
	$4\sin x + \cos x = 0,$				
	giving your answers to 1 decimal place.				
2	a Show that				
	$5\sin^2 x + 5\sin x + 4\cos^2 x \equiv$	$\sin^2 x + 5\sin x + 4.$			
	b Hence, find the values of x in the interval				
	$5\sin^2 x + 5\sin x + 4\cos^2 x =$	0			
3	Solve each equation for <i>x</i> in the interval $0 \le 1$	$x \leq 360^{\circ}$.			
	Give your answers to 1 decimal place where	appropriate.			
	$\mathbf{a} 2\sin x - \cos x = 0$	b $3\sin x = 4\cos x$			
	$\mathbf{c} \cos^2 x + 3\sin x - 3 = 0$	$\mathbf{d} 3\cos^2 x - \sin^2 x = 2$			
	$e 2\sin^2 x + 3\cos x = 3$	f $3\cos^2 x = 5(1 - \sin x)$			
	$\mathbf{g} 3\sin x \tan x = 8$	h $\cos x = 3 \tan x$			
	i $3\sin^2 x - 5\cos x + 2\cos^2 x = 0$	j $2\sin^2 x + 7\sin x - 2\cos^2 x = 0$			
	$\mathbf{k} 3\sin x - 2\tan x = 0$	$1 \sin^2 x - 9 \cos x - \cos^2 x = 5$			
4	Solve each equation for θ in the interval $-\pi$	$\leq \theta \leq \pi$ giving your answers in terms of π .			
	$\mathbf{a} 4\cos^2\theta = 1$	b $4\sin^2\theta + 4\sin\theta + 1 = 0$			
	$\mathbf{c} \cos^2\theta + 2\cos\theta - 3 = 0$	$\mathbf{d} 3\sin^2\theta - \cos^2\theta = 0$			
	$e 4\sin^2\theta - 5\sin\theta + 2\cos^2\theta = 0$	$\mathbf{f} \sin^2 \theta - 3 \cos \theta - \cos^2 \theta = 2$			
5	Prove that				
	$\mathbf{a} (\sin x + \cos x)^2 \equiv 1 + 2\sin x \cos x$	b $\frac{1}{\cos x} - \cos x \equiv \sin x \tan x, \cos x \neq 0$			
	$\mathbf{c} \frac{\cos^2 x}{1 - \sin x} \equiv 1 + \sin x, \sin x \neq 1$	d $\frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \cos x \neq 0$			
6	a Prove the identity				
	$(\cos x - \tan x)^2 + (\sin x + 1)^2$	$\equiv 2 + \tan^2 x.$			
	b Hence find, in terms of π , the values of x is				
	$(\cos x - \tan x)^2 + (\sin x + 1)^2$	= 3.			
7	$f(x) \equiv \cos^2 x + 2\sin x, 0 \le x$	$\leq 2\pi$.			
	a Prove that $f(x)$ can be expressed in the for	m			
	$f(x) = 2 - (\sin x - 1)^2$.				
	b Hence deduce the maximum value of $f(x)$	and the value of x for which this occurs.			

- 1 Find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ for which
 - **a** $3 \tan x \sqrt{3} = 0$,
 - **b** $2\cos(x+\frac{\pi}{3})+\sqrt{3}=0.$
- 2 Given that $\cos A = \sqrt{3} 1$,
 - **a** find the value of $\sin^2 A$ in the form $p\sqrt{3} + q$ where p and q are integers,
 - **b** show that $\tan^2 A = \frac{\sqrt{3}}{2}$.

6

C2


The diagram shows sector *OAB* of a circle, centre *O*, radius 8 cm, in which $\angle AOB = 45^{\circ}$.

- **a** Find the perimeter of the sector in centimetres to 1 decimal place.
- **b** Show that the area of the shaded segment is $8(\pi 2\sqrt{2})$ cm².
- 4 Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 360^\circ$ for which $2\sin^2 \theta + \sin \theta - \cos^2 \theta = 2.$

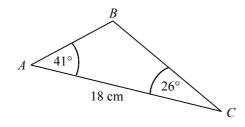
5 Solve, for x in the interval $-\pi \le x \le \pi$, the equation

$$3\sin^2 x = 4(1 - \sin x),$$

giving your answers to 2 decimal places.

The diagram shows the curves $y = 2 \sin x$ and $y = 3 \cos x$ for x in the interval $0 \le x \le 2\pi$. Find, to 2 decimal places, the coordinates of the points where the curves intersect in this interval.

7 **a** Sketch the curve $y = \cos 2x^{\circ}$ for x in the interval $0 \le x \le 360$.

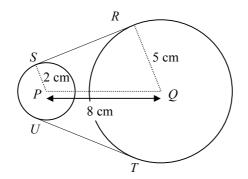

- **b** Find the values of x in the interval $0 \le x \le 360$ for which $\cos 2x^\circ = -\frac{1}{2}$.
- 8 Solve, for θ in the interval $0 \le \theta \le 360$, the equation

$$12 \cos \theta^{\circ} = 7 \tan \theta^{\circ}$$
.

giving your answers to 1 decimal place.

- 9 Given that $\tan 15^\circ = \frac{\tan 60^\circ \tan 45^\circ}{1 + (\tan 60^\circ \times \tan 45^\circ)}$,
 - **a** show that $\tan 15^\circ = 2 \sqrt{3}$,
 - **b** find the exact value of tan 345°.
- 10 Find, to an appropriate degree of accuracy, the values of x in the interval $0 \le x \le 360^\circ$ for which $\sin^2 x + 5 \cos x 3 \cos^2 x = 2$.

11


The diagram shows triangle *ABC* in which AC = 18 cm, $\angle BAC = 41^{\circ}$ and $\angle ACB = 26^{\circ}$. Find to 3 significant figures

- a the length BC,
- **b** the area of triangle *ABC*.
- 12 Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation $(6 \cos \theta - 1)(\cos \theta + 1) = 3.$
- 13 Find, in degrees to 1 decimal place, the values of x in the interval $-180^\circ \le x \le 180^\circ$ for which $\sin^2 x + 5 \sin x = 2 \cos^2 x$.
- 14 Prove that

a
$$\sin^4 \theta - 2 \sin^2 \theta \equiv \cos^4 \theta - 1$$

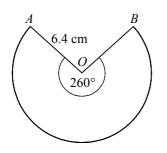
b
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv \frac{2}{\sin\theta}$$
, for $\sin\theta \neq 0$

15

The gears in a toy are shown in the diagram above.

A thin rubber band passes around two circular discs. The centres of the discs are at P and Q where PQ = 8 cm and their radii are 2 cm and 5 cm respectively. The sections of the rubber band not in contact with the discs, RS and TU, are assumed to be taught.

- **a** Show that $\angle PQR = 1.186$ radians to 3 decimal places.
- **b** Find the length *RS*.
- **c** Find the length of the rubber band in this situation.


(3)

- 1 Find, in radians to 2 decimal places, the values of θ in the interval $0 \le \theta \le 2\pi$ for which
 - **a** $\sin(\theta + \frac{\pi}{4}) = 0.4$,
 - **b** $1 3\cos 2\theta = 0$. (5)
- **a** Sketch the curve $y = \sin 3x$ for x in the interval $0 \le x \le 180^\circ$, showing the coordinates 2 of the turning points of the curve. (3)
 - **b** Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation

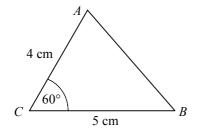
$$\tan^2\theta - 2\tan\theta - 3 = 0. \tag{6}$$

3

C2

The diagram shows the major sector OAB of a circle, centre O, radius 6.4 cm. The reflex angle subtended by the major arc AB at O is 260°.

- **a** Express 260° in radians, correct to 3 decimal places. (1)
- **b** Find the perimeter of the major sector *OAB*.
- c Find the area of the major sector OAB. (2)
- Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation 4


$$3\cos^2\theta + 6\cos\theta = 2\sin^2\theta + 6,$$

giving your answers to 1 decimal place.

(7)

(3)

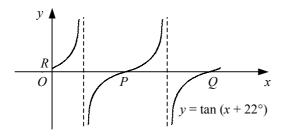
The diagram shows triangle ABC in which AC = 4 cm, BC = 5 cm and $\angle ACB = 60^{\circ}$.

- **a** Find the exact area of triangle *ABC*. (2)
- **b** Show that $AB = \sqrt{21}$ cm.
- **c** Find the value of sin ($\angle ABC$) in the form $k\sqrt{7}$ where k is an exact fraction. (3)

Find, to 1 decimal place, the values of x in the interval $0 \le x \le 360$ for which 6

$$\tan (2x + 15)^\circ = 2. \tag{6}$$

7 Find the values of
$$\theta$$
 in the interval $0 \le \theta \le 360^\circ$ for which
 $\sin \theta \tan \theta - \cos \theta = 1.$ (8)


(3)

(3)

- 8 The line with equation y = 6 intersects the circle with equation $x^2 + y^2 10x 2y 3 = 0$ at the points *P* and *Q*.
 - a Find the coordinates of the centre and the radius of the circle. (3)
 - **b** Find the coordinates of the points *P* and *Q*.
 - c Find the area of the minor segment enclosed by the chord PQ and the circle. (6)
- 9 Find the values of θ in the interval $0 \le \theta \le 360^\circ$ for which

$$5\sin^2\theta + 5\sin\theta + 2\cos^2\theta = 0.$$
 (8)

10

The diagram shows the curve $y = \tan (x + 22^\circ)$ for x in the interval $0 \le x \le 360^\circ$.

- **a** Write down the coordinates of the points P and Q where the curve crosses the x-axis. (2)
- **b** Find the coordinates of the point R where the curve meets the *y*-axis. (1)
- **c** Write down the equations of the curve's asymptotes.

11 a Find, to 1 decimal place, the values of x in the interval $0 \le x \le 360^\circ$, for which $5 \sin x = 2 \cos x$.

b Solve, for *y* in the interval $0 \le y \le 2\pi$, the equation

$$2\sin^2 y - \sin y = 1,$$

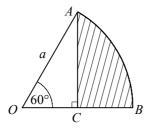
giving your answers in terms of π .

12 Solve, for θ in the interval $-180^\circ \le \theta \le 180^\circ$, the equation

$$3\cos^2\theta - 5\cos\theta + 2\sin^2\theta = 0,$$

giving your answers to 1 decimal place.

(7)

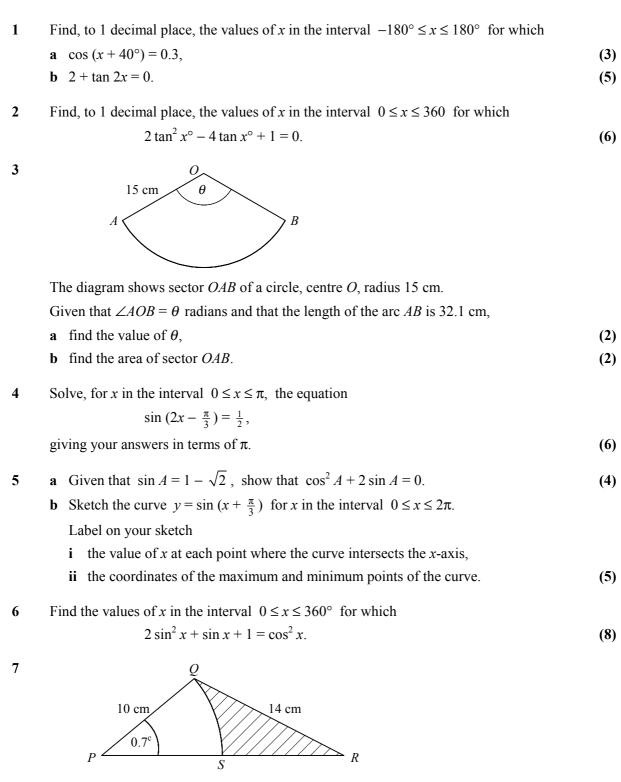

(1)

(2)

(4)

(6)

13



The diagram shows the circular sector OAB, centre O. The point C lies on OB such that AC is perpendicular to OB.

Given that OA = a, and that $\angle AOB = 60^{\circ}$,

- **a** find the area of sector *OAB* in terms of *a* and π , (3)
- **b** find the length OC in terms of a,
- c show that the area of the shaded region bounded by the arc *AB* and the straight lines *AC* and *BC* is given by $\frac{1}{24}a^2(4\pi 3\sqrt{3})$. (5)

C2

The diagram shows triangle *PQR* in which PQ = 10 cm, QR = 14 cm and $\angle QPR = 0.7$ radians.

a Find the size of $\angle PRQ$ in radians to 2 decimal places.

The point S lies on PR such that PS = 10 cm. The shaded region is bounded by the straight lines QR and RS and the arc QS of a circle, centre P.

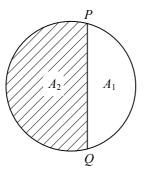
b Find the area of the shaded region.

(3)

(6)

8	a Given that $0 < A < 90^{\circ}$, and that $\sin A = \frac{\sqrt{5}}{3}$,	
	i show that $\cos A = \frac{2}{3}$,	
	ii find the exact value of $\tan A$.	(5)
	b Find the values of x in the interval $0 \le x \le 360^\circ$ for which	
	$5\sin x\cos x + \cos x = 0.$	(6)
9	Find the values of θ in the interval $0 \le \theta \le 180$ for which	
	$\cos\left(2\theta+30\right)^\circ=-\tfrac{1}{2}.$	(6)
10	a Sketch the curve $y = \cos (x - 30)^{\circ}$ for x in the interval $-180 \le x \le 180$, showing the	

a Sketch the curve y = cos (x - 30)° for x in the interval -180 ≤ x ≤ 180, showing the coordinates of any maximum or minimum points on the curve.
 b Find the x-coordinates of the points where the curve intersects the line y = 0.2 in this


(3)

11 Find the values of x in the interval $0 \le x \le 360^\circ$ for which

interval, giving your answers to 1 decimal place.

$$4\cos^2 x - \cos x - 2\sin^2 x = 0.$$
 (8)

12

The diagram shows a circle of radius r cm. The chord PQ divides the circle into the unshaded minor segment of area A_1 and the shaded major segment of area A_2 .

Given that PQ subtends an angle of θ radians at the centre of the circle,

a find an expression for A_1 in terms of r and θ . (3)

Given also that $\theta = \frac{5\pi}{6}$,

b show that
$$A_1: A_2 = (5\pi - 3): (7\pi + 3).$$
 (6)

13 Find, in terms of
$$\pi$$
, the values of x in the interval $0 \le x \le 2\pi$ for which

$$3\tan x - 2\cos x = 0.$$
 (7)

14 In triangle *ABC*, AB = 5 cm, AC = 7 cm and BC = 8 cm.

- **a** Find the value of $\cos(\angle ABC)$. (3)
- **b** Show that the area of triangle *ABC* is $10\sqrt{3}$ cm². (5)

15 a Show that

$$(2 + \cos^2 \theta)(1 + \tan^2 \theta) \equiv 3 + 2\tan^2 \theta.$$
(3)

b Hence find the values of θ in the interval $0 \le \theta \le 360^\circ$ for which

$$(2 + \cos^2 \theta)(1 + \tan^2 \theta) = 7.$$
 (5)