June 2005 6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	<u>2</u> Penalise ±	B1 (1)
(b)	$8^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{64}} \text{ or } \frac{1}{(a)^2} \text{ or } \frac{1}{\sqrt[3]{8^2}} \text{ or } \frac{1}{8^{\frac{2}{3}}}$ $= \frac{1}{4} \text{ or } 0.25$ Allow \pm	M1
	$=\frac{1}{4}$ or 0.25	A1 (2)
		(3)
(b)	M1 for understanding that "-" power means reciprocal $8^{\frac{2}{3}} = 4$ is M0A0 and $-\frac{1}{4}$ is M1A0	
2. (a)	$\frac{dy}{dx} = 6 + 8x^{-3}$ $x^{n} \to x^{n-1}$ both (6x ⁰ is OK)	M1 A1 (2)
(b)	$\int (6x - 4x^{-2})dx = \frac{6x^2}{2} + 4x^{-1} + c$	M1 A1 A1 (3) (5)
(b)	In (a) and (b) M1 is for a correct power of x in at least one term. This could be 6 in (a) or $+c$ in (b) 1^{st} A1 for one correct term in x : $\frac{6x^2}{2}$ or $+4x^{-1}$ (or better simplified versions) 2^{nd} A1 for all 3 terms as printed or better in one line. N.B. M1A0A1 is not possible. SC. For integrating their answer to part (a) just allow the M1 if $+c$ is present	

Question Number	Scheme		Marks
3. (a)	$x^{2} - 8x - 29 \equiv (x - 4)^{2} - 45$ $(x \pm 4)^{2}$ $(x - 4)^{2} - 16 + (-29)$ $(x \pm 4)^{2} - 45$	M1 A1 A1	
ALT	Compare coefficients $-8 = 2a$ equation for a $a = -4 \underline{AND} a^2 + b = -29$ $b = -45$	M1 A1 A1	(3)
(b)	$(x-4)^2 = 45$ (follow through their a and b from (a)) $\Rightarrow x - 4 = \pm \sqrt{45}$ $x = 4 \pm 3\sqrt{5}$ $d = 3 (\pm 0K)$	M1 A1 A1	(3) (6)
(a)	M1 for $(x \pm 4)^2$ or an equation for a (allow sign error ± 4 or ± 8 on ALT) 1stA1 for $(x-4)^2-16(-29)$ can ignore -29 or for stating $a=-4$ and an equation for b 2^{nd} A1 for $b=-45$ Note M1A0 A1 is possible for $(x+4)^2-45$ N.B. On EPEN these marks are called B1M1A1 but apply them as M1A1A1		
(b)	M1 for a full method leading to $x-4=$ or $x=$ (condone $x-4=\sqrt{-n}$) N.B. $(x-4)^2-45=0$ leading to $(x-4)\pm\sqrt{45}=0$ is M0A0A0 A1 for c and A1 for d N.B. M1 and A1 for c do not need \pm (so this is a special case for the formula method) but \pm must be present for the d mark) Note Use of formula that ends with $\frac{8\pm6\sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.		

Question Number	Scheme	Marks
4. (a)	Shape Points O (3,15)	B1 B1 (2)
(b)	-2 (1,5) -2 4	M1
	-2 and 4 max	A1 A1 (3) (5)
(a)	Marks for shape: graphs must have curved sides and round top. Don't penalise twice. (If both graphs are really straight lines then penalise B0 in part (a) only) 1^{st} B1 for \cap shape through (0, 0) and ((k ,0) where k >0) 2^{nd} B1 for max at (3, 15) and 6 labelled or (6, 0) seen Condone (15,3) if 3 and 15 are correct on axes. Similarly (5,1) in (b)	
(b)	M1 for \cap shape <u>NOT</u> through $(0, 0)$ but must cut <i>x</i> -axis twice. 1 st A1 for -2 and 4 labelled or (-2, 0) and (4, 0) seen 2 nd A1 for max at (1, 5). Must be clearly in 1 st quadrant	
5.	$x = 1 + 2y$ and sub $\rightarrow (1 + 2y)^2 + y^2 = 29$ $\Rightarrow 5y^2 + 4y - 28(= 0)$ i.e. $(5y + 14)(y - 2) = 0$	M1 A1 M1
	$(y =)2 \text{ or } -\frac{14}{5}$ (o.e.) $y = 2 \Rightarrow x = 1 + 4 = 5$; $y = -\frac{14}{5} \Rightarrow x = -\frac{23}{5}$ (o.e)	M1A1 f.t. (6)
	1 st M1 Attempt to sub leading to equation in 1 variable Condone sign error such as 1-2y, x = -(1+2y) penalise 1 st A1 only 1 st A1 Correct 3TQ (condone = 0 missing) 2 nd M1 Attempt to solve 3TQ leading to 2 values for y. 2 nd A1 Condone mislabelling x = for y = but then M0A0 in part (c). 3 rd M1 Attempt to find at least one x value (must use a correct equation) 3 rd A1 f.t. f.t. only in x = 1 + 2y (3sf if not exact) Both values.	
	N.B False squaring. (e.g. $x^2 + 4y^2 = 1$) can only score the last 2 marks.	

Question	Scheme	Marks
Number 6. (a)	$6x+3 > 5-2x \qquad \Rightarrow 8x > 2$ $x > \frac{1}{4} \text{ or } 0.25 \text{ or } \frac{2}{8}$	M1 A1 (2)
(b)	(2x-1)(x-3) (>0)	M1
	Critical values $x = \frac{1}{2}$, 3 (both)	A1
	with a	
	Choosing "outside" region	M1
	$x > 3$ or $x < \frac{1}{2}$	A1 f.t.
	1 1	(4)
(c)	$x > 3$ or $\frac{1}{4} < x < \frac{1}{2}$ [(3,\infty) or $(\frac{1}{4}, \frac{1}{2})$ is OK]	B1f.t. B1f.t. (2)
		(8)
(a)	M1 Multiply out and collect terms (allow one slip and allow use of = here)	
(b)	1 st M1 Attempting to factorise $3TQ \rightarrow x =$	
	2 nd M1 Choosing the outside region	
	2^{nd} A1 f.t. f.t. their critical values N.B.(x>3, x > $\frac{1}{2}$ is M0A0)	
(c)	f.t. their answers to (a) and (b)	
	1 st B1 a correct f.t. leading to an <u>infinite</u> region 2 nd B1 a correct f.t. leading to a <u>finite</u> region	
	Penalise \leq or \geq once only at first offence. For $p < x < q$ where $p > q$ penalise the final A1 in (b).	
	e.g. (a) (b) (c) Mark	
	$x > \frac{1}{4}$ $\frac{1}{2} < x < 3$ $\frac{1}{2} < x < 3$ B0 B1 $x > \frac{1}{4}$ $x > 3$, $x > \frac{1}{2}$ $x > 3$ B1 B0	
	$x > \frac{1}{4}$ $x > 3$, $x > \frac{1}{2}$ $x > 3$ B1 B0	

Question Number	Scheme	Marks
7. (a)	$(3-\sqrt{x})^2 = 9 - 6\sqrt{x} + x$	M1
	$(3 - \sqrt{x})^2 = 9 - 6\sqrt{x} + x$ $\div by \sqrt{x} \longrightarrow 9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$	A1 c.s.o.
		(2)
(b)	1 3	
()	$\int (9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}) dx = \frac{9x^{\frac{1}{2}}}{\frac{1}{2}} - 6x + \frac{x^{\frac{3}{2}}}{\frac{3}{2}} (+c)$	M1 A2/1/0
	use $y = \frac{2}{3}$ and $x = 1$: $\frac{2}{3} = 18 - 6 + \frac{2}{3} + c$	M1
	c = -12	A1 c.so.
	So $y = 18x^{\frac{1}{2}} - 6x + \frac{2}{3}x^{\frac{3}{2}} - 12$	A1f.t. (6)
		(8)
(a) (b)	M1 Attempt to multiply out $(3-\sqrt{x})^2$. Must have 3 or 4 terms, allow one sign error A1 cso. Fully correct solution to printed answer. Penalise invisible brackets or wrong working. 1st M1 Some correct integration: $x^n \to x^{n+1}$ A1 At least 2 correct unsimplified terms Ignore + c A2 All 3 terms correct (unsimplified). 2nd M1 Use of $y = \frac{2}{3}$ and $x = 1$ to find c . No + c is M0. A1c.s.o. for -12. (o.e.) Award this mark if " $c = -12$ " stated i.e. not as part of an expression for y A1f.t. for 3 simplified x terms with $y =$ and a numerical value for c . Follow through their value of c but it must be a number.	
Question	Scheme	Marks

Number		
8. (a)	$y-(-4) = \frac{1}{3}(x-9) \text{or} \frac{y-(-4)}{x-9} = \frac{1}{3}$ $3y-x+21=0 \text{(o.e.) (condone 3 terms with integer coefficients e.g. } 3y+21=x)$	M1 A1 A1 (3)
(b)	Equation of l_2 is: $y = -2x$ (o.e.) Solving l_1 and l_2 : $-6x - x + 21 = 0$ p is point where $x_p = 3$, $y_p = -6$ x_p or y_p y_p or x_p	B1 M1
(c)	(l_1 is $y = \frac{1}{3}x - 7$) C is $(0, -7)$ or OC = 7 Area of $\triangle OCP = \frac{1}{2}OC \times x_p$, $= \frac{1}{2} \times 7 \times 3 = 10.5$ or $\frac{21}{2}$	B1f.t. M1 A1c.a.o.
ALT	By Integration: M1 for $\pm \int_{0}^{x_{p}} (l_{1} - l_{2}) dx$, B1 ft for correct integration (follow through their l_{1}), then A1cao.	(3) (10)
(a)	M1 for full method to find equation of l_1 1stA1 any unsimplified form	
(b)	M1 Attempt to solve two linear equations leading to linear equation in one variable 2^{nd} A1 f.t. only f.t. their x_p or y_p in $y = -2x$ N.B. A fully correct solution by drawing, or correct answer with no working can score all the marks in part (b), but a partially correct solution by drawing only scores the first B1.	
(c)	B1f.t. Either a correct OC or f.t. from their l_1 M1 for correct attempt in letters or symbols for $\triangle OCP$ A1 c.a.o. $-\frac{1}{2} \times 7 \times 3 \text{ scores M1 A0}$	
MR	(x-axis for y-axis) Get $C = (21, 0)$ Area of $\triangle OCP = \frac{1}{2}OC \times y_p = \frac{1}{2} \times 21 \times 6 = 63$ (B0M1A0)	

Question Number	Scheme	Marks
9 (a)	$(S =) a + (a + d) + \dots + [a + (n-1)d]$ $(S =) [a + (n-1)d] + \dots + a$ $2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$ } either $2S = n[2a + (n-1)d]$	B1 M1 dM1
	$S = \frac{n}{2} [2a + (n-1)d]$	A1 c.s.o (4)
(b)	$(a = 149, d = -2)$ $u_{21} = 149 + 20(-2) = £109$	M1 A1 (2)
(c)	$S_n = \frac{n}{2} [2 \times 149 + (n-1)(-2)] \qquad (= n(150 - n))$	M1 A1
(0)	$S_n = 5000 \Rightarrow n^2 - 150n + 5000 = 0 (*)$	A1 c.s.o (3)
(d)	(n-100)(n-50) = 0 $n = 50 or 100$	M1 A2/1/0 (3)
(e)	$u_{100} < 0$ $\therefore n = 100$ not sensible	B1 f.t. (1) (13)
(a)	B1 requires at least 3 terms, must include first and last terms, an adjacent term and dots! There must be + signs for the B1 (or at least implied see snippet 9D) 1 st M1 for reversing series. Must be arithmetic with <i>a</i> , <i>n</i> and <i>d</i> or <i>l</i> . (+ signs not essential here) 2 nd dM1 for adding, must have 2 <i>S</i> and be a genuine attempt. Either line is sufficient. Dependent on 1 st M1 (NB Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)	
(b)	M1 for using $a = 149$ and $d = \pm 2$ in $a + (n-1)d$ formula.	
(c)	M1 for using their a, d in S_n A1 any correct expression A1cso for putting $S_n = 5000$ and simplifying to given expression. No wrong work NR. EPEN has P1M1A1 have but apply marks as M1A1A1 as in scheme	
(4)	NB EPEN has B1M1A1 here but apply marks as M1A1A1 as in scheme	
(d)	M1 Attempt to solve leading to $n =$ A2/1/0 Give A1A0 for 1 correct value and A1A1 for both correct	
(e)	B1 f.t. Must mention 100 and state $u_{100} < 0$ (or loan paid or equivalent) If giving f.t. then must have $n \ge 76$.	

Question Number	Scheme	Marks
10 (a)	x = 3, $y = 9 - 36 + 24 + 3 = 0$ (9 - 36 + 27=0 is OK)	B1 (1)
(b)	$\frac{dy}{dx} = \frac{3}{3}x^2 - 2 \times 4 \times x + 8 \qquad (x^2 - 8x + 8)$	M1 A1
	When $x = 3$, $\frac{dy}{dx} = 9 - 24 + 8 \Rightarrow m = -7$	M1
	Equation of tangent: $y-0 = -7(x-3)$ y = -7x + 21	M1 A1 c.a.o (5)
(c)	$\frac{dy}{dx} = m \text{gives} x^2 - 8x + 8 = -7$	M1
	$(x^2 - 8x + 15 = 0)$	
	(x-5)(x-3)=0	M1
	x = (3) or 5	A1
	$\therefore y = \frac{1}{3}5^3 - 4 \times 5^2 + 8 \times 5 + 3$	M1
	$y = -15\frac{1}{3}$ or $-\frac{46}{3}$	
	$y = -15\frac{1}{3}$ or $-\frac{1}{3}$	A1 (5)
		(11)
(b)	1 st M1 some correct differentiation ($x^n \to x^{n-1}$ for one term) 1 st A1 correct unsimplified (all 3 terms)	(11)
	2^{nd} M1 substituting $x_P (=3)$ in their $\frac{dy}{dx}$ clear evidence	
	3^{rd} M1 using their m to find tangent at p. The m must be from their $\frac{dy}{dx}$ at $x_p (= 3)$	
	Use of $\frac{1}{7}$ here scores M0A0 but Could get all 3 Ms in Part (c).	
(c)	1 st M1 forming a correct equation "their $\frac{dy}{dx}$ = gradient of their tangent"	
	2^{nd} M1 for solving a quadratic based on their $\frac{dy}{dx}$ leading to $x =$ The quadratic	
	could be simply $\frac{dy}{dx} = 0$.	
	3^{rd} M1 for using their x value (obtained from their quadratic) in y to obtain y coordinate. Must have one of the other two M marks to score this.	
MR	For misreading (0, 3) for (3, 0) award B0 and then M1A1 as in scheme. Then allow all M marks but no A ft. (Max 7)	