

Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C2 (6664)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010

Publications Code UA023699 All the material in this publication is copyright © Edexcel Ltd 2010

SOME GENERAL PRINCIPLES FOR C2 MARKING

(But the particular mark scheme always takes precedence)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a,b):

If the *a* and *b* are the wrong way round the M mark can still be given if a correct formula is seen,

(e.g. $y - y_1 = m(x - x_1)$) otherwise M0.

If (a, b) is substituted into y = mx + c to find c, the M mark is for attempting this.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A</u> (or B) marks which <u>would have been</u> <u>lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

If in doubt, send the response to Review.

edexcel

June 2010 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) 2.35, 3.13, 4.01 (One or two correct B1 B0, all correct B1 B1) <u>Important</u> : If part (a) is blank, or if answers have been crossed out and no replacement answers are visible, please send to Review as 'out of clip'.	B1 B1	(2)
	(b) $\frac{1}{2} \times 0.2$ (or equivalent numerical value)	B1	
	$k \{(1+5)+2(1.65+p+q+r)\}, k \text{ constant}, k \neq 0 \text{(See notes below)} \\ = 2.828 (awrt 2.83, allowed even after minor slips in values)$	M1 A1 A1	
	The fractional answer $\frac{707}{250}$ (or other fraction wrt 2.83) is also acceptable. Answers with no working score no marks.		(4)
	 (a) Answers must be given to 2 decimal places. <u>No marks</u> for answers given to only 1 decimal place. 		
	(b) The <i>p</i> , <i>q</i> and <i>r</i> below are positive numbers, none of which is equal to any of: 1, 5, 1.65, 0.2, 0.4, 0.6 or 0.8		
	M1 A1: $k\{(1+5)+2(1.65+p+q+r)\}$ M1 A0: $k\{(1+5)+2(1.65+p+q)\}$ or $k\{(1+5)+2(p+q+r)\}$ M0 A0: $k\{(1+5)+2(1.65+p+q+r+other value(s))\}$		
	Note that if the only mistake is to <u>omit</u> a value from the second bracket, this is considered as a slip and the M mark is allowed.		
	<u>Bracketing mistake</u> : i.e. $\frac{1}{2} \times 0.2(1+5) + 2(1.65+2.35+3.13+4.01)$		
	instead of $\frac{1}{2} \times 0.2\{(1+5)+2(1.65+2.35+3.13+4.01)\}$, so that only		
	the $(1 + 5)$ is multiplied by 0.1 scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).		
	<u>Alternative</u> : Separate trapezia may be used, and this can be marked equivalently.		

Question Number	Scheme			Marks	
2	(a) Attempting to find $f(3)$ or $f(-3)$			M1	
	$f(3) = 3(3)^3 - 5(3)^2 - (58 \times 3) + 40 = 81 - 4$	5 - 174 + 40 = -9	98	A1	(2)
	(b) $\{3x^3 - 5x^2 - 58x + 40 = (x - 5)\}$ $(3x^2 + 10x)$	(-8)		M1 A1	
	Attempt to <u>factorise</u> 3-term quadratic, or to (see general principles at beginning of sche implied by the correct solutions to the quad	use the quadratic me). This mark n ratic.	e formula nay be	M1	
	(3x-2)(x+4) = 0 $x =$ or $x =$	$\frac{-10 \pm \sqrt{100 + 96}}{6}$	_	A1 ft	
	$\frac{2}{3}$ (or exact equiv.), -4, 5 (Allow 'implic	tit' solns, e.g. f(5) = 0, etc.)	A1	(5)
	Completely correct solutions without worki	ing: full marks.			7
(a) <u>Alterna</u>	tive (long division):		<u>'Grid' met</u>	hod	
Divide	by $(x-3)$ to get $(3x^2 + ax + b)$, $a \neq 0, b \neq 0$.	[M1]	3 3 -5 -	-58 40	
$(3x^2 +$	4x - 46), and -98 seen.	[A1]	0 9	12 -138	
(If con	tinues to say 'remainder $= 98$ ', isw)		3 4 -	-46 -98	
(b) 1st M	requires use of $(x-5)$ to obtain $(3x^2 + ax + b)$,	$a \neq 0, b \neq 0$.	<u>'Grid' met</u>	hod	
(V	Vorking need not be seen this could be done 't	by inspection'.)	3 3 -5 0 15	$ \begin{array}{r} -58 & 40 \\ 50 & -40 \end{array} $	_
$(3x^2 + 10x - 8) \blacktriangleleft 3 10 -$				-8 0	
2^{nd} M f	or the attempt to factorise their 3-term quadratic	, or to solve it us	ing the quad	ratic formul	a.
	Factorisation: $(3x^2 + ax + b)$	=(3x+c)(x+d),	where $ cd $ =	= b .	
A1ft: Correct factors for their 3-term quadratic <u>followed by a solution</u> (at least one value, which might be incorrect), <u>or</u> numerically correct expression from the quadratic formula for their					
<u>Note</u> th	3-term quadratic. herefore that if the quadratic is correctly factorise will be lost.	ed but no solution	is are given,	the last 2 m	arks
Alterna	tive (first 2 marks):				
(x-5)	(3x2 + ax + b) = 3x3 + (a - 15)x2 + (b - 5a)x - 5b	b=0,			
	then compare coeffic	cients to find valu	\underline{es} of a and b	b. [N	[1]
		a = 10), $b = -8$	[A	.1]
<u>Alterna</u>	<u>ative 1</u> : (factor theorem) reding that $f(-4) = 0$				
$\Delta 1 \cdot St_{t}$	the final $r(-4) = 0$				
M1· Fi	nding third factor $(x - 5)(x + 4)(3x + 2)$				
A1: Fully correct factors (no ft available here) followed by a solution (which might be incorrect)					
A1: All solutions correct.					
Alterna	<u>ttive 2</u> : (direct factorisation)				
M1: Fa	ctors $(x-5)(3x+p)(x+q)$ A1: $pq = -8$				
M1: (x	$(x-5)(3x\pm 2)(x\pm 4)$				
Final A	A marks as in Alternative 1.				
Throug	hout this scheme, allow $\left(x \pm \frac{2}{3}\right)$ as an alternative	ve to $(3x \pm 2)$.			

Question Number	Scheme	Marks	
3	(a) $\left(\frac{dy}{dx}\right) = 2x - \frac{1}{2}kx^{-\frac{1}{2}}$ (Having an extra term, e.g. + <i>C</i> , is A0)	M1 A1	
			(2)
	(b) Substituting $x = 4$ into their $\frac{dy}{dx}$ and 'compare with zero' (The mark is allowed for : <, >, =, \leq , \geq)	M1	
	$8 - \frac{k}{4} < 0$ $k > 32$ (or $32 < k$) <u>Correct inequality needed</u>	A1	
	т Т		(2) 4
	(a) M: $x^2 \to cx$ or $k\sqrt{x} \to cx^{-\frac{1}{2}}$ (<i>c</i> constant, $c \neq 0$)		
	(b) Substitution of $x = 4$ into y scores M0. However, $\frac{dy}{dx}$ is sometimes		
	called y, and in this case the M mark can be given.		
	$\frac{dy}{dx} = 0$ may be 'implied' for M1, when, for example, a value of k or an		
	inequality solution for k is found.		
	<u>Working</u> must be seen to justify marks in (b), i.e. $k > 32$ alone is M0 A0.		

Question Number	Scheme	Marks	
4	(a) $(1 + ax)^7 = 1 + 7ax$ or $1 + 7(ax)$ (<u>Not</u> unsimplified versions)	B1	
	$+\frac{7\times 6}{2}(ax)^2 + \frac{7\times 6\times 5}{6}(ax)^3$ Evidence from <u>one</u> of these terms is enough	M1	
	$+21a^2x^2$ or $+21(ax)^2$ or $+21(a^2x^2)$	A1	
	$+35a^{3}x^{3}$ or $+35(ax)^{3}$ or $+35(a^{3}x^{3})$	A1	(4)
	(b) $21a^2 = 525$	M1	
	$a = \pm 5$ (Both values are required)	A1	
	(The answer $a = 5$ with no working scores M1 A0)		(2)
	(a) The terms can be 'listed' rather than added.		0
	M1: Requires correct structure: a correct binomial coefficient in any form (perhaps from Pascal's triangle) with the correct power of <i>x</i> . Allow missing <i>a</i> 's and wrong powers of <i>a</i> , e.g. $\frac{7 \times 6}{2} ax^2, \qquad \frac{7 \times 6 \times 5}{3 \times 2} x^3$		
	However, $21 + a^2 x^2 + 35 + a^3 x^3$ or similar is M0.		
	$1 + 7ax + 21 + a^2x^2 + 35 + a^3x^3 = 57 + \dots$ scores the B1 (isw).		
	$\begin{pmatrix} 7\\2 \end{pmatrix}$ and $\begin{pmatrix} 7\\3 \end{pmatrix}$ or equivalent such as 7C_2 and 7C_3 are acceptable,		
	but $\underline{\text{not}}\left(\frac{7}{2}\right)$ or $\left(\frac{7}{3}\right)$ (unless subsequently corrected).		
	1 st A1: Correct x^2 term. 2 nd A1: Correct x^3 term (The binomial coefficients <u>must</u> be simplified).		
	Special case: If $(-)^2 = 1$ (-) ³		
	If $(ax)^2$ and $(ax)^2$ are seen within the working, but then lost		
	<i>a</i> 's omitted throughout:		
	Note that only the M mark is available in this case.		
	(b) M: Equating their coefficient of x^2 to 525.		
	An equation in a or a^2 alone is required for this M mark, but allow		
	recovery that shows the required coefficient, e.g. $21a^2x^2 = 525 \implies 21a^2 = 525$ is acceptable.		
	but $21a^2x^2 = 525 \implies a^2 = 25$ is not acceptable.		
	After $21ax^2$ in the answer for (a), allow 'recovery' of a^2 in (b) so that full marks are available for (b) (but not retrospectively for (a)).		

Question Number	Scheme	Marks
5	(a) $\tan \theta = \frac{2}{5}$ (or 0.4) (i.s.w. if a value of θ is subsequently found)	B1 (1)
	Requires the correct value with no incorrect working seen.	
	(b) awrt 21.8 (α)	B1
	(Also allow awrt 68.2, ft from $\tan \theta = \frac{5}{2}$ in (a), but no other ft)	
	(This value must be seen in part (b). It may be implied by a correct solution, e.g. 10.9)	
	$180 + \alpha$ (= 201.8), or $90 + (\alpha/2)$ (if division by 2 has already occurred) (α found from tan $2x =$ or tan $x =$ or sin $2x = \pm$ or cos $2x = \pm$)	M1
	$260 \pm \alpha_{\rm c} (-281.8) = \alpha_{\rm c} 180 \pm (\alpha_{\rm c}/2)$	M1
	$300 + \alpha$ (= 381.8), of $180 + (\alpha/2)$	
	OR $540 + \alpha$ (= 561.8), or $270 + (\alpha/2)$	
	$(\alpha \text{ found from } \tan 2x =)$	
	Dividing at least one of the angles by 2	M1
	(α found from tan $2x =$ or sin $2x =$ or cos $2x =$)	
	x = 10.9, 100.9, 190.9, 280.9 (Allow awrt)	A1 (5)
(b) Extra s	olution(s) in range: Loses the final A mark.	
Extra s	solutions outside range: Ignore (whether correct or not).	
Comm	on answers:	
10.9 au 10.9 au	nd 100.9 would score B1 M1 M0 M1 A0 (Ensure that <u>these</u> M marks are awar nd 190.9 would score B1 M0 M1 M1 A0 (Ensure that <u>these</u> M marks are awar	rded) rded)
Altern	atives:	N 1
(1) $2\cos 2$	$x - 5\sin 2x = 0 R\cos(2x + \lambda) = 0 \lambda = 68.2 \implies 2x + 68.2 = 90$	31
	$2x + \lambda = 270$	/11
	$2x + \lambda = 450 \text{or} 2x + \lambda = 630 \qquad \text{N}$	A1
	Subtracting λ and dividing by 2 (at least once)	M1
(ii) 25 sin	$2^{2} 2x = 4\cos^{2} 2x = 4(1 - \sin^{2} 2x)$	
29	$\sin^2 2x = 4$ $2x = 21.8$ B1	
The M	marks are scored as in the main scheme, but extra solutions will be likely, lo	sing the A mark.
<u>Using</u>	radians:	
B1: Ca	in be given for awrt 0.38 (β)	
MI: Fo	or $\pi + \beta$ or $180 + \beta$	
MI: Fo	or $2\pi + \beta$ or $3\pi + \beta$ (Must now be consistently radians)	
MI:F(or dividing at least one of the angles by 2	
(Corre	ct) answers only (or by graphical methods):	
B and	M marks can be awarded by implication, e.g.	
10.9 sc	cores B1 M0 M0 M1 A0	
10.9, 1	00.9 scores B1 M1 M0 M1 A0	
10.9, 1	00.9, 190.9, 280.9 scores full marks.	
Using	11, etc. instead of 10.9 can still score the M marks by implication.	

1 (2)
1
(2)
(2)
(3)
9

Question Number	Scheme	Marks		
7	(a) $2\log_3(x-5) = \log_3(x-5)^2$	B1		
	$\log_3(x-5)^2 - \log_3(2x-13) = \log_3\frac{(x-5)^2}{2x-13}$	M1		
	$\log_3 3 = 1$ seen or used correctly	B1		
	$\log_3\left(\frac{P}{Q}\right) = 1 \implies P = 3Q \qquad \left\{\frac{(x-5)^2}{2x-13} = 3 \implies (x-5)^2 = 3(2x-13)\right\}$	M1		
	$x^2 - 16x + 64 = 0 \tag{(*)}$	A1 cso (5)		
	(b) $(x-8)(x-8) = 0 \implies x = 8$ <u>Must</u> be seen in part (b).	M1 A1		
	Or: Substitute $x = 8$ into original equation and verify.	(2)		
	Having additional solution(s) such as $x = -8$ loses the A mark.			
(a) Marila	x = 8 with no working scores both marks.	/		
(a) Marks	may be awarded if equivalent work is seen in part (b).			
1st M:	$\log_3(x-5)^2 - \log_3(2x-13) = \frac{\log_3(x-5)^2}{\log_3(2x-13)}$ is M0			
	$2\log_3(x-5) - \log_3(2x-13) = 2\log\frac{x-5}{2x-13}$ is M0			
2 nd M: After the first mistake above, this mark is available only if there is 'recovery' to the required				
$\log_3\left(\frac{P}{Q}\right) = 1 \implies P = 3Q$. Even then the final mark (cso) is lost.				
<u>'Cancelling logs'</u> , e.g. $\frac{\log_3(x-5)^2}{\log_3(2x-13)} = \frac{(x-5)^2}{2x-13}$ will also lose the 2 nd M.				
A typical wrong solution:				
$\log_3 \frac{(x-5)^2}{2x-13} = 1 \implies \log_3 \frac{(x-5)^2}{2x-13} = 3 \implies \frac{(x-5)^2}{2x-13} = 3 \implies (x-5)^2 = 3(2x-13)$				
(Wrong step here)				
This, w	with no evidence elsewhere of $\log_3 3 = 1$, scores B1 M1 B0 M0 A0			
Howev	er, $\log_3 \frac{(x-5)^2}{2(x-1)^2} = 1 \implies \frac{(x-5)^2}{2(x-1)^2} = 3$ is correct and could lead to full marks.			
	$2x-13 \qquad 2x-13$ (Here log 3-1 is implied)			
No log i	$(\text{Here } \log_3 5 - 1 \text{ is implied}).$			
It is <u>not</u>	acceptable to jump immediately to $\frac{(x-5)^2}{2x-13} = 3$. The only mark this scores is	s the 1 st B1 (by		
generou	2x - 15 implication).			
(b) M1 \cdot A	ttempt to solve the given quadratic equation (usual rules) so the factors $(r = 8)$	(r-8) with po		

(b) M1: Attempt to solve the given quadratic equation (usual rules), so the factors (x-8)(x-8) with no solution is M0.

Question Number	Scheme	Marks	
8	(a) $\frac{dy}{dx} = 3x^2 - 20x + k$ (Differentiation is required)	M1 A1	
	At $x = 2$, $\frac{dy}{dx} = 0$, so $12 - 40 + k = 0$ $k = 28$ (*)	A1 cso	
	<u>N.B. The '= 0' must be seen at some stage to score the final mark.</u>		
	<u>Alternatively</u> : (using $k = 28$)		
	$\frac{dy}{dx} = 3x^2 - 20x + 28$ (M1 A1)		(2)
	Assuming $k = 28$ only scores the final cso mark if there is justification that $\frac{dy}{dt} = 0$ at $x = 2$ represents the maximum turning point		(3)
	dx $dx = 2$ represents the <u>maximum</u> turning point.		
	(b) $\int (x^3 - 10x^2 + 28x) dx = \frac{x^4}{4} - \frac{10x^3}{3} + \frac{28x^2}{2}$ Allow $\frac{kx^2}{2}$ for $\frac{28x^2}{2}$	M1 A1	
	$\left[\frac{x^4}{4} - \frac{10x^3}{3} + 14x^2\right]_0^2 = \dots \qquad \left(=4 - \frac{80}{3} + 56 = \frac{100}{3}\right)$	M1	
	(With limits 0 to 2, substitute the limit 2 into a 'changed function')		
	y-coordinate of $P = 8 - 40 + 56 = 24$ (The B1 for 24 may be scored by implication from later working)	B1	
	Area of rectangle = $2 \times (\text{their } y - \text{coordinate of } P)$ Area of $P = (\text{their } 48) = (\text{their } \frac{100}{9}) = -\frac{44}{44} \left(14\frac{2}{9} \text{ or } 14\frac{1}{6}\right)$	M1 A1	
	After of $K = (\text{then } 46) - (\text{then } \frac{1}{3}) = -\frac{1}{3} \left(\frac{14}{3} \text{ of } 14.0\right)$ If the subtraction is the 'wrong way round' the final A mark is lost	WITAT	(6)
	$(a) \mathbf{M}_{n} = \frac{n^{-1}}{n} \left(\frac{1}{n^{-1}} + \frac{1}{n^{-1}} \right) \left(\frac{1}{n^{-1}} + \frac{1}{n^{-1}} + \frac{1}{n^{-1}} \right) \right$		9
	 (a) M: xⁿ → cxⁿ⁺¹ (c constant, c ≠ 0) for one term, seen <u>in part (a)</u>. (b) 1st M: xⁿ → cxⁿ⁺¹ (c constant, c ≠ 0) for one term. Integrating the <u>gradient function</u> loses this M mark. 		
	2ndM: Requires use of limits 0 and 2, with 2 substituted into a 'changed function'. (It may, for example, have been differentiated).		
	Final M: Subtract their values either way round. This mark is dependent on the use of calculus and a correct method attempt for the area of the rectangle.		
	A1: Must be exact, not 14.67 or similar, but isw after seeing, say, $\frac{44}{3}$.		
	<u>Alternative</u> : (effectively finding area of rectangle by integration)		
	$\int \left\{ 24 - (x^3 - 10x^2 + 28x) \right\} dx = 24x - \left(\frac{x^3}{4} - \frac{10x^3}{3} + \frac{28x^2}{2} \right), \text{ etc.}$		
	This can be marked equivalently, with the 1^{st} A being for integrating the same 3 terms correctly. The 3rd M (for subtraction) will be scored at the same stage as the 2^{nd} M. If the subtraction is the 'wrong way round', the final A mark is lost.		

Question Number	Scheme	Marks		
	(a) $25000 \times 1.03 = 25750$			
9	$\left\{25000 + 750 = 25750, \text{ or } 25000 \frac{(1 - 0.03^2)}{1 - 0.03} = 25750\right\} $ (*)	B1	(1)	
	(b) $r = 1.03$ Allow $\frac{103}{100}$ or $1\frac{3}{100}$ but no other alternatives	B1	(1)	
	(c) $25000r^{N-1} > 40000$ (Either letter <i>r</i> or their <i>r</i> value) Allow '= ' or '<'	M1		
	$r^{M} > 1.6 \Rightarrow \log r^{M} > \log 1.6$ Allow '= ' or '<' (See below)			
	OR (by change of base), $\log_{1.03} 1.6 < M \implies \frac{\log 1.6}{\log 1.03} < M$	M1		
	$(N-1)\log 1.03 > \log 1.6$ (Correct bracketing required) (*)	A1 cso		
	Accept work for part (c) seen in part (d)		(3)	
	(d) Attempt to evaluate $\frac{\log 1.6}{\log 1.03} + 1$ {or $25000(1.03)^{15}$ and $25000(1.03)^{16}$ }	M1		
	$N = 17$ (<u>not</u> 16.9 and not e.g. $N \ge 17$) Allow '17 th year' Accept work for part (d) seen in part (c)	A1	(2)	
	(e) Using formula $\frac{a(1-r^n)}{1-r}$ with values of <i>a</i> and <i>r</i> , and <i>n</i> = 9, 10 or 11	M1		
	$25000(1-1.03^{10})$	۸1		
	1-1.03	AI		
	287 000 (<u>must</u> be rounded to the nearest 1 000) Allow 287000.00	A1	(3) 10	
(c) 2^{nd} M:				
With, s	say, N instead of $N-1$, this mark is still available.			
Jumpin	<u>ng</u> straight from $1.03^{N-1} > 1.6$ to $(N-1)\log 1.03 > \log 1.6$ can			
score	only M1 M0 A0.			
(The	intermediate step $\log 1.03^{N-1} > \log 1.6$ must be seen).			
Longe	<u>r methods</u> require correct log work throughout for 2 nd M, e.g.:			
log(25	$\log 1000r^{N-1}) > \log 40000 \implies \log 25000 + \log r^{N-1} > \log 40000 \implies$			
	$\log r^{N-1} > \log 40000 - \log 25000 \implies \qquad \log r^{N-1} > \log 1.6$			
(d) Correc	t answer with no working scores both marks.			
Evaluating $\log\left(\frac{1.6}{1.03}\right) + 1$ does <u>not</u> score the M mark.				
 (e) M1 can also be scored by a "year by year" method, <u>with terms added</u>. (Allow the M mark if there is evidence of adding 9, 10 or 11 terms). 1st A1 is scored if the 10 correct terms have been added (allow terms to be to the nearest 100). To the nearest 100, these terms are: 25000, 25800, 26500, 27300, 28100, 29000, 29900, 30700, 31700, 32600 				
<u>No</u> working shown: Special case: 287 000 scores 1 mark, scored on ePEN as 1, 0, 0. (Other answers with no working score no marks).				

Question Number	Scheme	Marks	
10	(a) $(10-2)^2 + (7-1)^2$ or $\sqrt{(10-2)^2 + (7-1)^2}$	M1 A1	
	$(x \pm 2)^2 + (y \pm 1)^2 = k$ (k a positive <u>value</u>)	M1	
	$(x-2)^{2} + (y-1)^{2} = 100$ (Accept 10 ² for 100)	A1	
	(Answer only scores full marks)		(4)
	(b) (Gradient of radius =) $\frac{7-1}{10-2} = \frac{6}{8}$ (or equiv.) Must be seen in part (b)	B1	
	Gradient of tangent = $\frac{-4}{3}$ (Using perpendicular gradient method)	M1	
	$y-7 = m(x-10)$ Eqn., in any form, of a line through (10, 7) with any numerical gradient (except 0 or ∞)	M1	
	$y-7 = \frac{-4}{3}(x-10)$ or equiv (ft gradient of <u>radius</u> , dep. on <u>both</u> M marks)	A1ft	
	${3y = -4x + 61}$ (N.B. The A1 is only available as <u>ft</u> after B0) The unsimplified version scores the A mark (isw if necessary subsequent mistakes in simplification are not penalised here. The equation must at some stage be <u>exact</u> , not, e.g. $y = -1.3x + 20.3$		
			(4)
	(c) $\sqrt{r^2 - \left(\frac{r}{2}\right)^2}$ Condone sign slip if there is evidence of correct use of Pythag.	M1	
	$=\sqrt{10^2-5^2}$ or numerically exact equivalent	A1	
	$PQ(=2\sqrt{75})=10\sqrt{3}$ Simplest surd form $10\sqrt{3}$ required for final mark	A1	
			(3) 11
	(b) 2 nd M: Using (10, 7) to find the equation, in any form, of a straight line through (10, 7), with any numerical gradient (except 0 or ∞).		
	<u>Alternative</u> : 2^{nd} M: Using (10, 7) and an <i>m</i> value in $y = mx + c$ to find a value of <i>c</i> .		
	(b) <u>Alternative</u> for first 2 marks (differentiation):		
	$2(x-2) + 2(y-1)\frac{dy}{dx} = 0$ or equiv. B1		
	Substitute $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$ M1		
	(This M mark can be awarded generously, even if the attempted 'differentiation' is not 'implicit').		
	(c) <u>Alternatives</u> :		
	To score M1, must be a <u>fully</u> correct method to obtain $\frac{1}{2}PQ$ or PQ.		
	1^{st} A1: For alternative methods that find PQ directly, this mark is for an exact numerically correct version of PQ.		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA023699 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH