

Review Exercise

- 1 a On the same set of axes sketch the graphs of y = |2x 1| and y = |x k|, k > 1.
 - **b** Find, in terms of k, the values of x for which |2x 1| = |x k|.
- 2 **a** Sketch the graph of y = |3x + 2| 4, showing the coordinates of the points of intersection of the graph with the axes.
 - **b** Find the values of x for which |3x + 2| = 4 + x.

M (2, 4)

The figure shows the graph of y = f(x), $-5 \le x \le 5$.

The point M (2, 4) is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of

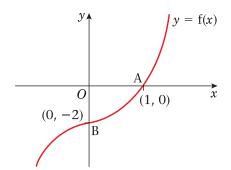
$$\mathbf{a} \ y = \mathbf{f}(x) + 3$$

b
$$y = |f(x)|$$

$$\mathbf{c} \ \ y = \mathbf{f}(|x|).$$

Show on each graph the coordinates of any maximum turning points.

4



The diagram shows a sketch of the graph of the increasing function f.

The curve crosses the x-axis at the point A(1, 0) and the y-axis at the point B(0, -2) On separate diagrams, sketch the graph of:

a
$$y = f^{-1}(x)$$

b
$$y = f(|x|)$$

c
$$y = f(2x) + 1$$

d
$$y = 3f(x - 1)$$
.

In each case, show the images of the points A and B.

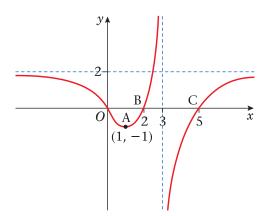
For the positive constant k, where k > 1, the functions f and g are defined by

f:
$$x \to \ln(x + k), x > -k$$
,
g: $x \to |2x - k|, x \in \mathbb{R}$

- **a** Sketch, on the same set of axes, the graphs of f and g. Give the coordinates of points where the graphs meet the axes.
- **b** Write down the range of f.
- **c** Find, in terms of k, $fg(\frac{k}{4})$.

The curve C has equation y = f(x). The tangent to C at the point with *x*-coordinate 3 is parallel to the line with equation 9y = 2x + 1.

d Find the value of *k*.



The diagram shows a sketch of the graph of y = f(x).

The curve has a minimum at the point A(1,-1), passes through x-axis at the origin, and the points B(2, 0) and C(5, 0); the asymptotes have equations x = 3 and $\nu = 2$.

a Sketch, on separate axes, the graph of

$$\mathbf{i} \ y = |f(x)|$$

$$ii \ y = -f(x+1)$$

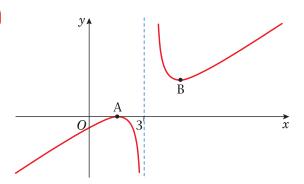
iii
$$y = f(-2x)$$

in each case, showing the images of the points A, B and C.

b State the number of solutions to the equation

$$i \ 3|f(x)| = 2$$

i
$$3|f(x)| = 2$$
 ii $2|f(x)| = 3$.



The diagram shows part of the curve C with equation y = f(x) where

$$f(x) = \frac{(x-1)^2}{(x-3)}.$$

The points A and B are the stationary points of C.

The line x = 3 is a vertical asymptote to C.

- **a** Using calculus, find the coordinates of A and B.
- **b** Sketch the curve C^* , with equation y = f(-x) + 2, showing the coordinates of the images of A and B.
- **c** State the equation of the vertical asymptote to C^* .
- **a** On the same set of axes, in the interval $-\pi < \theta < \pi$, sketch the graphs of

i
$$y = \cot \theta$$
, ii $y = 3 \sin 2\theta$.

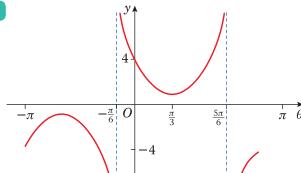
ii
$$y = 3 \sin 2\theta$$
.

b Solve, in the interval $-\pi < \theta < \pi$, the equation

$$\cot \theta = 3 \sin 2\theta.$$

giving your answers, in radians, to 3 significant figures where appropriate.

9



The diagram shows, in the interval $-\pi \le \theta \le \pi$, the graph of $y = k \sec (\theta - \alpha)$. The curve crosses the *y*-axis at the point (0, 4), and the θ -coordinate of its minimum point is $\frac{\pi}{3}$.

- **a** State, as a multiple of π , the value of α .
- **b** Find the value of *k*.
- **c** Find the exact values of θ at the points where the graph crosses the line $y = -2\sqrt{2}$.
- **d** Show that the gradient at the point on the curve with θ -coordinate $\frac{7\pi}{12}$ is $2\sqrt{2}$.
- **10 a** Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$.
 - **b** Solve, for $0 \le \theta < 360^\circ$, the equation $2 \tan^2 \theta + \sec \theta = 1$, giving your answers to 1 decimal place.

- **11 a** Prove that $\sec^4 \theta \tan^4 \theta = 1 + 2 \tan^2 \theta$.
 - **b** Find all the values of x, in the interval $0 \le x \le 360^\circ$, for which $\sec^4 2x = \tan 2x(3 + \tan^3 2x)$.

Give your answers correct to 1 decimal place, where appropriate.

12 a Prove that

$$\cot \theta - \tan \theta = 2 \cot 2\theta, \quad \theta \neq \frac{n\pi}{2}.$$

- **b** Solve, for $-\pi < \theta < \pi$, the equation $\cot \theta \tan \theta = 5$, giving your answers to 3 significant figures.
- 13 **a** Solve, in the interval $0 \le \theta \le 2\pi$ sec $\theta + 2 = \cos \theta + \tan \theta (3 + \sin \theta)$, giving your answers to 3 significant figures.
 - **b** Solve, in the interval $0 \le x \le 360^\circ$, $\cot^2 x = \csc x(2 \csc x)$, giving your answers to 1 decimal place.
- 14 Given that

$$y = \arcsin x$$
, $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

- **a** express arccos x in terms of y.
- **b** Hence find, in terms of π the value of $\arcsin x + \arccos x$.

Given that

$$y = \arccos x$$
, $-1 \le x \le 1$ and $0 \le y \le \pi$,

- **c** sketch, on the same set of axes, the graphs of $y = \arcsin x$ and $y = \arccos x$, making it clear which is which.
- **d** Explain how your sketches can be used to evaluate $\arcsin x + \arccos x$.
- **15 a** By writing $\cos 3\theta$ as $\cos (2\theta + \theta)$, show that

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta.$$

- **b** Given that $\cos \theta = \frac{\sqrt{2}}{3}$, find the exact value of $\sec 3\theta$.
- **16** Given that $\sin (x + 30^\circ) = 2 \sin (x 60^\circ)$,
 - **a** show that $\tan x = 8 + 5\sqrt{3}$.
 - **b** Hence express $\tan (x + 60^{\circ})$ in the form $a + b\sqrt{3}$.
- 17 **a** Given that $\cos A = \frac{3}{4}$ where $270^{\circ} < A < 360^{\circ}$, find the exact value of $\sin 2A$.
 - **b** i Show that

$$\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) = \cos 2x$$

Given that

$$y = 3\sin^2 x + \cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right),$$

ii show that
$$\frac{dy}{dx} = \sin 2x$$

- 18 Solve, in the interval $-180^{\circ} \le x < 180^{\circ}$, the equations
 - $\mathbf{a} \cos 2x + \sin x = 1$
 - **b** $\sin x (\cos x + \csc x) = 2 \cos^2 x$, giving your answers to 1 decimal place.
- **19 a** Prove that

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90n^{\circ}.$$

b Sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$.

c Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 3,$$

giving your answers to 1 decimal place.

E

- **20 a** Express $3 \sin x + 2 \cos x$ in the form $R \sin (x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - **b** Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$.
 - **c** Solve, for $0 < x < 2\pi$, the equation $3 \sin x + 2 \cos x = 1$,

giving your answers to 3 decimal places.

E

The point *P* lies on the curve with equation $y = \ln(\frac{1}{3}x)$.

The x-coordinate of P is 3.

Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

22 a Differentiate with respect to x

i
$$3 \sin^2 x + \sec 2x$$
,

ii
$$\{x + \ln(2x)\}^3$$
.

Given that $y = \frac{5x^2 - 10x + 9}{(x - 1)^2}$, $x \neq -1$,

b show that $\frac{dy}{dx} = -\frac{8}{(x-1)^3}$

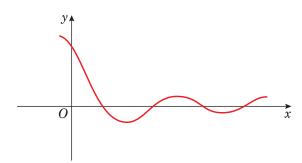
E

- 23 Given that $y = \ln(1 + e^x)$,
 - **a** show that when $x = -\ln 3$, $\frac{dy}{dx} = \frac{1}{4}$
 - **b** find the exact value of x for which $e^y \frac{dy}{dx} = 6$.
- **24 a** Differentiate with respect to x
 - **i** x^2e^{3x+2} ,
 - ii $\frac{\cos(2x)}{3x}$.
 - **b** Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x.

- 25 Given that $x = y^2 e^{\sqrt{y}}$,
 - **a** find, in terms of y, $\frac{\mathrm{d}x}{\mathrm{d}y}$
 - **b** show that when y = 4, $\frac{dy}{dx} = \frac{e^{-2}}{12}$.
- 26 **a** Given that $y = \sqrt{1 + x^2}$, show that $\frac{dy}{dx} = \frac{\sqrt{3}}{2}$ when $x = \sqrt{3}$.
 - **b** Given that $y = \ln\{x + \sqrt{1 + x^2}\}$, show that $\frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}$.
- 27 Given that $f(x) = x^2 e^{-x}$,
 - **a** find f'(x), using the product rule for differentiation
 - **b** show that $f''(x) = (x^2 4x + 2)e^{-x}$.

A curve C has equation y = f(x).

- **c** Find the coordinates of the turning points of *C*.
- **d** Determine the nature of each turning point of the curve *C*.
- **28 a** Express ($\sin 2x + \sqrt{3} \cos 2x$) in the form $R \sin(2x + k\pi)$, where R > 0 and $0 < k < \frac{1}{2}$.



The diagram shows part of the curve with equation

$$y = e^{-2\sqrt{2}x}(\sin 2x + \sqrt{3}\cos 2x).$$

b Show that the *x*-coordinates of the turning points of the curve satisfy the equation

$$\tan\left(2x + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}.$$

x-coordinate $\frac{\pi}{3}$.

- **a** Show that the *y*-coordinate of *P* is $\frac{\sqrt{2}\pi^2}{18}$.
- **b** Show that the gradient of *C* at *P* is 0.809, to 3 significant figures.

In the interval $0 < x < \frac{\pi}{2}$, C has a maximum at the point A.

c Show that the *x*-coordinate, k, of A satisfies the equation $x \tan x = 4$.

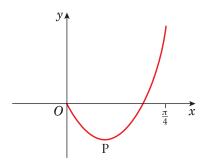
The iterative formula

$$x_{n+1} = \tan^{-1}\left(\frac{4}{x_n}\right), \quad x_0 = 1.25,$$

is used to find an approximation for k.

d Find the value of *k*, correct to 4 decimal places.

30



The figure shows part of the curve with equation

$$y = (2x - 1) \tan 2x$$
, $0 \le x < \frac{\pi}{4}$.

The curve has a minimum at the point P. The *x*-coordinate of P is *k*.

a Show that *k* satisfies the equation

$$4k + \sin 4k - 2 = 0$$
.

The iterative formula

$$x_{n+1} = \frac{1}{4}(2 - \sin 4x_n), \quad x_0 = 0.3,$$

is used to find an approximate value for *k*.

- **b** Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.
- **c** Show that k = 0.277, correct to 3 significant figures.