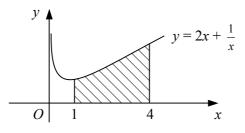
INTEGRATION

C4

1 Integrate with respect to x $c = \frac{1}{r}$ d $\frac{6}{r}$ $\mathbf{a} \mathbf{e}^x$ **b** $4e^x$ 2 Integrate with respect to t **a** $2 + 3e^{t}$ **b** $t + t^{-1}$ **c** $t^{2} - e^{t}$ **e** $\frac{7}{t} + \sqrt{t}$ **f** $\frac{1}{4}e^{t} - \frac{1}{t}$ **g** $\frac{1}{3t} + \frac{1}{t^{2}}$ **d** $9-2t^{-1}$ **h** $\frac{2}{5t} - \frac{3e^{t}}{7}$ 3 Find **a** $\int (5 - \frac{3}{x}) dx$ **b** $\int (u^{-1} + u^{-2}) du$ **c** $\int \frac{2e^{t} + 1}{5} dt$ **d** $\int \frac{3y + 1}{y} dy$ **e** $\int (\frac{3}{4}e^{t} + 3\sqrt{t}) dt$ **f** $\int (x - \frac{1}{x})^{2} dx$ The curve y = f(x) passes through the point (1, -3). 4 Given that $f'(x) = \frac{(2x-1)^2}{x}$, find an expression for f(x). 5 Evaluate **a** $\int_{0}^{1} (e^{x} + 10) dx$ **b** $\int_{2}^{5} (t + \frac{1}{t}) dt$ **c** $\int_{1}^{4} \frac{5 - x^{2}}{x} dx$ **d** $\int_{-2}^{-1} \frac{6y+1}{3y} dy$ **e** $\int_{-3}^{3} (e^x - x^2) dx$ **f** $\int_{2}^{3} \frac{4r^2 - 3r + 6}{r^2} dr$ **g** $\int_{\ln 2}^{\ln 4} (7 - e^u) \, du$ **h** $\int_{6}^{10} r^{-\frac{1}{2}} (2r^{\frac{1}{2}} + 9r^{-\frac{1}{2}}) \, dr$ **i** $\int_{4}^{9} (\frac{1}{\sqrt{x}} + 3e^x) \, dx$ 6 $y = 3 + e^x$

The shaded region on the diagram is bounded by the curve $y = 3 + e^x$, the coordinate axes and the line x = 2. Show that the area of the shaded region is $e^2 + 5$.

7



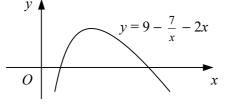
The shaded region on the diagram is bounded by the curve $y = 2x + \frac{1}{x}$, the x-axis and the lines x = 1 and x = 4. Find the area of the shaded region in the form $a + b \ln 2$.

C4 INTEGRATION

8 Find the exact area of the region enclosed by the given curve, the x-axis and the given ordinates. In each case, y > 0 over the interval being considered.

a $y = 4x + 2e^{x}$, x = 0, x = 1 **b** $y = 1 + \frac{3}{x}$, x = 2, x = 4 **c** $y = 4 - \frac{1}{x}$, x = -3, x = -1 **d** $y = 2 - \frac{1}{2}e^{x}$, x = 0, $x = \ln 2$ **e** $y = e^{x} + \frac{5}{x}$, $x = \frac{1}{2}$, x = 2**f** $y = \frac{x^{3} - 2}{x}$, x = 2, x = 3

9



The diagram shows the curve with equation $y = 9 - \frac{7}{x} - 2x$, x > 0.

- **a** Find the coordinates of the points where the curve crosses the *x*-axis.
- **b** Show that the area of the region bounded by the curve and the x-axis is $11\frac{1}{4} 7 \ln \frac{7}{2}$.

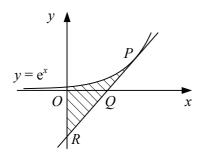
10 a Sketch the curve $y = e^x - a$ where a is a constant and a > 1.

Show on your sketch the coordinates of any points of intersection with the coordinate axes and the equation of any asymptotes.

- **b** Find, in terms of *a*, the area of the finite region bounded by the curve $y = e^x a$ and the coordinate axes.
- **c** Given that the area of this region is 1 + a, show that $a = e^2$.

11

12



The diagram shows the curve with equation $y = e^x$. The point *P* on the curve has *x*-coordinate 3, and the tangent to the curve at *P* intersects the *x*-axis at *Q* and the *y*-axis at *R*.

a Find an equation of the tangent to the curve at *P*.

b Find the coordinates of the points Q and R.

The shaded region is bounded by the curve, the tangent to the curve at P and the y-axis.

c Find the exact area of the shaded region.

$$f(x) \equiv (\frac{3}{\sqrt{x}} - 4)^2, x \in \mathbb{R}, x > 0.$$

a Find the coordinates of the point where the curve y = f(x) meets the x-axis.

The finite region R is bounded by the curve y = f(x), the line x = 1 and the x-axis.

b Show that the area of *R* is approximately 0.178