



# **Chemistry A**

Advanced GCE **F325** Equilibria, Energetics and Elements

## Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

| Question | Expected Answers                                                                                                                                                                                                                                                                                                                                                                                  | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 a      | F<br>B<br>G<br>E<br>D<br>FIVE correct ✓√√<br>FOUR correct ✓√<br>THREE correct ✓                                                                                                                                                                                                                                                                                                                   | 3     | ALLOW<br>1450<br>736<br>G<br>76<br>-642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| b        | Correct calculation<br>-642 - (+76 + (2 × 150) + 736 + 1450 + (2 × -349)) ✓<br>-642 - 1864<br>= - 2506 ✓ (kJ mol <sup>-1</sup> )                                                                                                                                                                                                                                                                  | 2     | ALLOW for 1 mark:<br>$-2705 (2 \times 150 \text{ and } 2 \times 349 \text{ not used for CI})$<br>$-2356 (2 \times 150 \text{ not used for CI})$<br>$-2855 (2 \times 349 \text{ not used for CI})$<br>+2506 (wrong sign)<br>DO NOT ALLOW any other answers                                                                                                                                                                                                                                                                                                                    |
| C        | Magnesium ion <b>OR</b> Mg <sup>2+</sup><br>has greater charge (than sodium ion <b>OR</b> Na <sup>+</sup> )<br><b>OR</b> Mg <sup>2+</sup> has greater charge density ✓<br>Magnesium ion <b>OR</b> Mg <sup>2+</sup> is smaller ✓<br>Mg <sup>2+</sup> has a stronger attraction (than Na <sup>+</sup> ) to Cl <sup>-</sup> ion<br><b>OR</b><br>Greater attraction between oppositely charged ions ✓ | 3     | ANNOTATIONS MUST BE USED<br>ALLOW magnesium/Mg is 2+ but sodium/Na is 1+<br>DO NOT ALLOW Mg atom is 2+ but Na atom is 1+<br>ALLOW 'charge density' here only<br>ALLOW Mg OR magnesium is smaller<br>DO NOT ALLOW Mg <sup>2+</sup> has a smaller atomic radius<br>ALLOW anion OR negative ion for Cl <sup>-</sup><br>DO NOT ALLOW chlorine ions<br>DO NOT ALLOW Mg has greater attraction<br>ALLOW 'attracts with more force' for greater attraction<br>but DO NOT ALLOW 'greater force (could be repulsion)<br>ALLOW reverse argument throughout in terms of Na <sup>+</sup> |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                             | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Qu | estic | n Expected Answers                                                                                                                                                               | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                              |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | а     | $BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$                                                                                                                | 1     | ALLOW multiples                                                                                                                                                                                                                                                                                                                                                                  |
|    | b     | <i>graph:</i><br>Straight/diagonal line through origin <b>OR</b> 0,0<br><b>AND</b><br>1st order with respect to $BrO_3^- \checkmark$                                             | 1     | <ul> <li>ANNOTATIONS MUST BE USED</li> <li>Both explanation and 1st order required for mark</li> <li>DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0)</li> <li>ALLOW 'As BrO<sub>3</sub><sup>-</sup> doubles, rate doubles' AND 1st order</li> <li>ALLOW rate is proportional to concentration AND 1st order</li> </ul> |
|    |       | <i>initial rates data:</i><br>When [Br <sup>-</sup> ] is doubled, rate $\times 2 \checkmark$<br>1st order with respect to Br <sup>-</sup> $\checkmark$                           | 4     | Mark order and explanation independently<br>Mark order first, then explanation                                                                                                                                                                                                                                                                                                   |
|    |       | When $[H^+] \times 2$ , rate $\times 4 (2^2) \checkmark$<br>2nd order with respect to $H^+ \checkmark$<br><i>Rate equation</i><br>rate = $k [BrO_3^-] [Br^-] [H^+]^2 \checkmark$ | 1     | ALLOW ECF from candidate's orders above                                                                                                                                                                                                                                                                                                                                          |

| Question | Expected Answers                                                                                                                                                                                                                | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Calculation of rate constant (3 marks)                                                                                                                                                                                          | 3     | ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$                                                                                                                                                           |       | Calculation can be from any of the experimental runs – they all give the same value of $k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$<br>= $1.7 \times 10^{-2}$ OR $1.65 \times 10^{-2} \checkmark \text{dm}^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$ |       | ALLOW mol <sup>-3</sup> dm <sup>9</sup> s <sup>-1</sup><br>ALLOW 1.6510579 × 10 <sup>-2</sup> and correct rounding to $1.7 \times 10^{-2}$<br>Correct numerical answer subsumes previous marking<br>point<br>DO NOT ALLOW fraction: $\frac{238}{14415}$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                 |       | ALLOW ECF from incorrect rate equation.<br>Examples are given below for 1st line of initial rates data.<br>IF other rows have been used, then calculate the rate constant<br>from data chosen.<br>Example 1: 1st order with respect to H <sup>+</sup><br>rate = k [BrO <sub>3</sub> <sup>-</sup> ] [Br <sup>-</sup> ] [H <sup>+</sup> ]<br>$k = \frac{\text{rate}}{[BrO_3^-][Br^-][H^+]}$<br>OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$<br>= 5.1 × 10 <sup>-3</sup> OR 5.12 × 10 <sup>-3</sup> ✓ dm <sup>6</sup> mol <sup>-2</sup> s <sup>-1</sup> ✓<br>ALLOW 5.11827957 × 10 <sup>-3</sup> and correct rounding to 5.1 × 10 <sup>-3</sup> |
|          |                                                                                                                                                                                                                                 |       | Example 2: Zero order with respect to $BrO_3^-$<br>$rate = k [Br^-] [H^+]^2$<br>$k = \frac{rate}{[Br^-][H^+]^2}$<br>OR $\frac{1.19 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$<br>$= 8.3 \times 10^{-4}$ OR $8.26 \times 10^{-4} \checkmark dm^6 mol^{-2} s^{-1} \checkmark$<br>ALLOW $8.255289629 \times 10^{-4}$ and correct rounding to $8.3 \times 10^{-4}$                                                                                                                                                                                                                                                                                                              |
|          | Total                                                                                                                                                                                                                           | 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Que | esti | on | Expected Answers                                                                                                                                                                      | Marks | Additional Guidance                                                                                                                                                                                                                                         |
|-----|------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | а    |    | measured pH > 1 <b>OR</b> [H <sup>+</sup> ] < 0.1 (mol dm <sup>-3</sup> ) $\checkmark$                                                                                                | 4     | ALLOW $C_2H_5$ throughout question<br>ALLOW $[H^+] < [CH_3CH_2COOH]$ OR $[H^+] < [HA]$<br>ALLOW measured pH is higher than expected<br>ALLOW measured pH is not as acidic as expected<br>ALLOW a quoted pH value or range > 1 and < 7<br>OR between 1 and 7 |
|     |      |    | [H <sup>+</sup> ] = 10 <sup>-pH</sup> ✓                                                                                                                                               |       | ALLOW [H <sup>+</sup> ] = antilog –pH OR [H <sup>+</sup> ] = inverse log –pH                                                                                                                                                                                |
|     |      |    | $K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]} \mathbf{OR} \frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]} \checkmark$                                                       |       | ALLOW $[H^+][A^-]$ OR $[H^+]^2$<br>[HA] [HA]                                                                                                                                                                                                                |
|     |      |    | Calculate $K_a$ from $\frac{[H^+]^2}{0.100}$ $\checkmark$                                                                                                                             |       | <b>IF</b> $K_a$ is <b>NOT</b> given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for $K_a$ also (i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)                                                                    |
|     | b    |    | Marks are for correctly calculated values.<br>Working shows how values have been derived.                                                                                             | 2     | <b>ALLOW</b> 3.467368505 × $10^{-14}$ and correct rounding to 3.5 × $10^{-14}$                                                                                                                                                                              |
|     |      |    | $[H^{+}] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ $[OH^{-}] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$ |       | ALLOW 0.28840315 and correct rounding to 0.29,<br>i.e. ALLOW 0.288<br>ALLOW alternative approach using pOH:                                                                                                                                                 |
|     |      |    |                                                                                                                                                                                       |       | pOH = $14 - 13.46 = 0.54 \checkmark$<br>[OH <sup>-</sup> ] = $10^{-0.54} = 0.29 \pmod{\text{dm}^{-3}} \checkmark$<br>Correct answer gets <b>BOTH</b> marks                                                                                                  |

| Question | Expected Answers                                                                                                                                                                                                                                | Marks | Additional Guidance                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C        | Propanoic acid reacts with sodium hydroxide<br>forming propanoate ions/sodium propanoate<br>OR<br>CH <sub>3</sub> CH <sub>2</sub> COOH + NaOH → CH <sub>3</sub> CH <sub>2</sub> COONa + H <sub>2</sub> O ✓<br>Some propanoic acid remains<br>OR | 7     | ANNOTATIONS MUST BE USED<br>ALLOW C <sub>2</sub> H <sub>5</sub> throughout question<br>ALLOW Adding NaOH forms propanoate ions/sodium propanoate<br>(imples that the NaOH is added to the propanoic acid)                                    |
|          | propanoic acid <b>AND</b> propanoate (ions)<br>/ sodium propanoate present ✓                                                                                                                                                                    |       | ALLOW: weak acid AND its conjugate base/salt present                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                 |       | Throughout, do not penalise comments that imply that pH is constant in presence of buffer                                                                                                                                                    |
|          | equilibrium: $CH_3CH_2COOH \Rightarrow H^+ + CH_3CH_2COO^-\checkmark$                                                                                                                                                                           |       | <b>DO NOT ALLOW</b> HA and A <sup>-</sup> in this equilibrium expression<br>For description of action of buffer below,<br><b>ALLOW</b> HA for $CH_3CH_2COOH$ ; <b>ALLOW</b> A <sup>-</sup> for $CH_3CH_2COO^-$                               |
|          | Added alkali<br>$CH_3CH_2COOH$ reacts with added alkali<br>$OR CH_3CH_2COOH + OH^- \rightarrow$<br>OR added alkali reacts with H <sup>+</sup><br>$OR H^+ + OH^- \rightarrow \checkmark$                                                         |       | Equilibrium responses must refer back to a written equilibrium.<br>IF no equilibrium shown, use the equilibrium as written in expected<br>answers (which is also written on page 6 of the paper)<br>ALLOW weak acid reacts with added alkali |
|          | → $CH_3CH_2COO^-$ <b>OR</b> Equilibrium → right $\checkmark$<br><b>Added acid</b><br>$CH_3CH_2COO^-$ reacts with added acid<br><b>OR</b> [H <sup>+</sup> ] increases $\checkmark$<br>→ $CH_3CH_2COOH$ <b>OR</b> Equilibrium → left $\checkmark$ |       | ALLOW conjugate base reacts with added acid<br>DO NOT ALLOW salt reacts with added acid                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                 | 5     |                                                                                                                                                                                                                                              |

| Question | Expected Answers                                                                                                                                                                                 | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d        | $HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$<br>acid 1 base 2 acid 2 base 1 $\checkmark$                                                                              | 2     | State symbols <b>NOT</b> required<br><b>ALLOW</b> 1 <b>AND</b> 2 labels the other way around.<br><b>ALLOW</b> 'just acid' and 'base' labels throughout if linked by lines so that<br>it is clear what the acid–base pairs are.<br><b>IF</b> proton transfer is wrong way around then <b>ALLOW</b> 2nd mark for idea<br>of acid–base pairs, i.e.<br>HNO <sub>3</sub> + CH <sub>3</sub> CH <sub>2</sub> COOH $\Rightarrow$ CH <sub>3</sub> CH <sub>2</sub> COO <sup>-</sup> + H <sub>2</sub> NO <sub>3</sub> <sup>+</sup> ×<br>base 2 acid 1 base 1 acid 2 $\checkmark$ |
| e i      | 2CH <sub>3</sub> CH <sub>2</sub> COOH + Mg → (CH <sub>3</sub> CH <sub>2</sub> COO) <sub>2</sub> Mg + H <sub>2</sub> $\checkmark$                                                                 | 1     | IGNORE state symbols<br>ALLOW ionic equation: $2H^+ + Mg \rightarrow Mg^{2+} + H_2$<br>IGNORE any random charges in formula of $(CH_3CH_2COO)_2Mg$<br>as long as the charges are correct (charges are treated as working)<br>i.e. $(CH_3COO^-)_2Mg$ OR $(CH_3COO)_2^-Mg$ should not be penalised<br>However, $Mg^{2+}$ instead of Mg on the left side of equation is obviously<br>wrong                                                                                                                                                                               |
| ii       | $2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$<br><b>OR</b> $2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$<br><b>OR</b> $H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$ | 1     | State symbols <b>NOT</b> required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | Total                                                                                                                                                                                            | 17    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Qu | esti | ion | Expected Answers                                                                                                                                                                         | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | a    | i   | Complete circuit (with voltmeter) and salt bridge<br>linking two half-cells ✓<br>Pt electrode in solution of Fe <sup>2+</sup> /Fe <sup>3+</sup> ✓<br>Ag in solution of Ag <sup>+</sup> ✓ | 3     | <ul> <li>DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but</li> <li>DO ALLOW any solution of any other silver salt (whether insoluble or not)</li> <li>IF candidate has used incorrect redox systems, then mark ECF as follows: <ul> <li>(i) each incorrect system will cost the candidate one mark</li> <li>(ii) ECF if species have been quoted (see Additional Guidance below)</li> <li>(iii) ECF for equation</li> <li>(iv) ECF for cell potential</li> <li>YOU MAY NEED TO WORK OUT THESE ECF RESPONSES</li> <li>YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN</li> </ul> </li> </ul> |
|    |      | ii  | electrons AND ions ✓                                                                                                                                                                     | 1     | For electrons, <b>ALLOW</b> e <sup>−</sup><br>For 'ions', <b>ALLOW</b> formula of an ion in one of the half-cells or salt<br>bridge, e.g. Ag <sup>+</sup> , Fe <sup>2+</sup> , Fe <sup>3+</sup><br><b>ALLOW ECF</b> as in (i)                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |      | iii | $Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$                                                                                                                               | 1     | ALLOW ECF as in (i)<br>ALLOW equilibrium sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |      | iv  | 0.43 V ✓                                                                                                                                                                                 | 1     | ALLOW ECF as in (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | b    | i   | OR O <sub>2</sub> AND H <sup>+</sup> ✓                                                                                                                                                   | 1     | ALLOW chlorine<br>ALLOW $O_2$ AND $4H^+$<br>ALLOW $O_2$ AND acid<br>DO NOT ALLOW $O_2$ alone<br>DO NOT ALLOW equation or equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |      | ii  | $\Gamma \checkmark$                                                                                                                                                                      | 1     | ALLOW 2I <sup>-</sup> OR iodide<br>DO NOT ALLOW equation or equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Question | Expected Answers                                                                                                                                                                                                                                                                                                                                                                                          | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C        | A fuel cell converts energy from reaction of a fuel<br>with oxygen into a voltage/electrical energy ✓<br>2H <sub>2</sub> + O <sub>2</sub> → 2H <sub>2</sub> O ✓<br>Two from:<br>• under pressure <b>OR</b> at low temperature <b>OR</b> as a<br>liquid<br>• adsorbed on solid<br>• absorbed within solid<br>✓✓<br>Energy is needed to make the hydrogen<br><b>OR</b> energy is needed to make fuel cell ✓ | 5     | Authonial GuidanceANNOTATIONS MUST BE USEDALLOW combustion for reaction of fuel with oxygen/reactantsALLOW a fuel cell requires constant supply of fuelOR operates continuously as long as a fuel (and oxygen) are addedALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ IGNORE state symbolsALLOW 'material' OR metal for solidALLOW as a metal hydride |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                                     | 13    |                                                                                                                                                                                                                                                                                                                                                                       |

| Qu | esti | ion | Expected Answers                                                                                                                                                                                        | Marks | Additional Guidance                                                                                                         |
|----|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|
| 5  | а    | i   | $(K_{c} = ) \frac{[NH_{3}]^{2}}{[N_{2}] [H_{2}]^{3}} \checkmark$                                                                                                                                        | 1     | Must be square brackets                                                                                                     |
|    |      | ii  | dm <sup>6</sup> mol <sup>−2</sup> ✓                                                                                                                                                                     | 1     | ALLOW mol <sup>-2</sup> dm <sup>6</sup><br>ALLOW ECF from incorrect <i>K</i> <sub>c</sub> expression                        |
|    | b    |     | Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.                                                                                         | 4     | ANNOTATIONS MUST BE USED<br>For all parts, ALLOW numerical answers from 2 significant<br>figures up to the calculator value |
|    |      |     | $[N_2] = \frac{7.2}{6.0} \text{ OR } 1.2 \text{ (mol dm}^{-3}\text{)}$                                                                                                                                  |       | 1st mark is for realising that concentrations need to be calculated.                                                        |
|    |      |     | AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm <sup>-3</sup> ) $\checkmark$<br>$[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$<br>OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)} \checkmark$ |       | Correct numerical answer with no working would score all previous calculation marks                                         |
|    |      |     | = 0.876 <b>OR</b> 0.88 (mol dm <sup>-3</sup> ) ✓                                                                                                                                                        |       | <b>ALLOW</b> calculator value: 0.876356092 down to 0.88, correctly rounded                                                  |
|    |      |     | amount NH <sub>3</sub> = $0.876 \times 6 = 5.26$ <b>OR</b> 5.3 (mol) $\checkmark$                                                                                                                       |       | ALLOW calculator value down to 5.3, correctly rounded                                                                       |

| b EXAMPLES OF INCORRECT RESPONSES IN (b) | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THAT MAY BE WORTHY OF CREDIT             | Additional Guidance<br>ALLOW ECF from incorrect concentrations (3 marks)<br>For example, If concentrations not calculated at start, then<br>$[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)}$ $\checkmark$<br>= 31.5 mol dm <sup>-3</sup> $\checkmark$<br>Equilibrium amount of NH <sub>3</sub> = 31.5 × 6 = 189.6 (mol) $\checkmark$<br>IF candidate has $K_c$ expression upside down, then all 4 marks<br>are available in (b) by ECF<br>Correct $[N_2]$ AND $[H_2]$ $\checkmark$<br>$[NH_3] = \sqrt{\frac{[N_2] [H_2]^3}{K_c}} = = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}}$ $\checkmark$<br>= 11.0 mol dm <sup>-3</sup> $\checkmark$<br>Equilibrium amount of NH <sub>3</sub> = 11.0 × 6 = 66.0 (mol) $\checkmark$<br>IF candidate has used $K_c$ value of $8.00 \times 10^{-2}$ AND values for N <sub>2</sub><br>AND H <sub>2</sub> with powers wrong, mark by ECF from calculated as<br>below (3 max in (b))<br>Correct $[N_2]$ AND $[H_2] \checkmark$<br>$[NH_3]$ expression $\times$<br>ECF: Calculated $[NH_3] \checkmark$ |

| Question | Expected Answers                                                                                                                                                                                                                                                                                         | Marks | Additional Guidance                                                                                                                                                                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C i      | Equilibrium shifts to right<br>OR Equilibrium towards ammonia ✓<br>Right hand side has fewer number of (gaseous) moles ✓                                                                                                                                                                                 | 2     | <ul> <li>ALLOW 'moves right' OR 'goes right' OR 'favours right'</li> <li>OR 'goes forwards'</li> <li>ALLOW 'ammonia side' has fewer moles</li> <li>ALLOW 'there are more (gaseous) moles on left'</li> </ul>                                                                                             |
| i        | $K_c$ does not change $\checkmark$ Increased pressure increases concentration terms on<br>bottom of $K_c$ expression more than the top<br><b>OR</b><br>system is now no longer in equilibrium $\checkmark$ top of $K_c$ expression increases and bottom decreases<br>until $K_c$ is reached $\checkmark$ | 3     | ALLOW there are more (gasedus) mores of field<br>ANNOTATIONS MUST BE USED<br>Any response in terms of $K_c$ changing scores ZERO for Part (ii)<br>ALLOW $K_c$ is temperature dependent only OR $K_c$ does not<br>change with pressure<br>ALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to $K_c$ |
| d i      | $CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$                                                                                                                                                                                                                                                       | 1     | State symbols <b>NOT</b> required<br><b>ALLOW</b> :<br>$CH_4 + H_2O \longrightarrow CH_3OH + H_2$<br>$CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$<br>$CH_4 + H_2O \longrightarrow 2H_2 + HCHO$<br>$CH_4 + 2H_2O \longrightarrow 3H_2 + HCOOH$                                                              |
| ii       | Electrolysis of water<br><b>OR</b> H <sub>2</sub> O $\longrightarrow$ H <sub>2</sub> + $\frac{1}{2}O_2 \checkmark$                                                                                                                                                                                       | 1     | ALLOW electrolysis of brine<br>DO NOT ALLOW reforming<br>DO NOT ALLOW cracking<br>DO NOT ALLOW reaction of metal with acid                                                                                                                                                                               |

| Question | Expected Answers                                                                                                                                                                                                                   | Marks | Additional Guidance                                                                                                                                                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e i      | Unless otherwise stated, marks are for correctly calculated values.                                                                                                                                                                |       | ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                 |
|          | Working shows how values have been derived.                                                                                                                                                                                        |       | See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)                                                                                                                                                                                                           |
|          | $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$<br>= -200 (J K <sup>-1</sup> mol <sup>-1</sup> ) <b>OR</b> -0.200 (kJ K <sup>-1</sup> mol <sup>-1</sup> ) |       | NO UNITS required at this stage<br>IGNORE units                                                                                                                                                                                                                          |
|          | Use of 298 K (could be within $\Delta G$ expression below) $\checkmark$                                                                                                                                                            |       |                                                                                                                                                                                                                                                                          |
|          | $\Delta G = \Delta H - T \Delta S$                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                          |
|          | <b>OR</b> $\Delta G = -92 - (298 \times -0.200)$                                                                                                                                                                                   |       |                                                                                                                                                                                                                                                                          |
|          | OR                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                          |
|          | $\Delta G = -92000 - (298 \times -200) \checkmark$                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                          |
|          | = −32.4 kJ mol <sup>−1</sup> OR −32400 J mol <sup>−1</sup> ✓<br>(Units must be shown)                                                                                                                                              | 5     | ALLOW –32.4 kJ OR –32400 J (Units must be shown)<br>Award all 5 marks above for correct answer with no working                                                                                                                                                           |
|          |                                                                                                                                                                                                                                    |       | <b>IF</b> 25 °C has been used instead of 298 K, correctly calculated $\Delta G$ values are = $-87$ kJ mol <sup>-1</sup> <b>OR</b> $-87000$ J mol <sup>-1</sup><br><b>4 marks</b> are still available up to this point and maximum possible from <b>(e)(i)</b> is 5 marks |
|          | For feasibility, $\Delta G < 0$ <b>OR</b> $\Delta G$ is negative $\checkmark$                                                                                                                                                      | 1     |                                                                                                                                                                                                                                                                          |
| ii       | As the temperature increases,<br>$T\Delta S$ becomes more negative<br><b>OR</b> $T\Delta S$ becomes more negative than $\Delta H$<br><b>OR</b> $T\Delta S$ becomes more significant $\checkmark$                                   | 2     | ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage)<br>ALLOW 'entropy term' as alternative for $T\Delta S$<br>ALLOW $-T\Delta S$ becomes more positive<br>ALLOW $-T\Delta S$ decreases                                                                      |
|          | Eventually $\Delta H - T \Delta S$ becomes positive $\checkmark$                                                                                                                                                                   |       | <b>ALLOW</b> $\triangle G$ becomes positive <b>OR</b> $\triangle G > 0$                                                                                                                                                                                                  |

| Qı | Question |   | Expected Answers                                               | Marks | Additional Guidance                                                                                                                                               |
|----|----------|---|----------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |          | I | Activation energy is too high<br><b>OR</b> reaction too slow ✓ | 1     | ALLOW increases the rate OR more molecules exceed<br>activation energy OR more successful collisions<br>ALLOW rate constant increases<br>IGNORE comments on yield |
|    |          |   | Total                                                          | 22    |                                                                                                                                                                   |

| Question |   | on |                                                                                                                               | Marks |                                                                                                                                                                                                                                                                                                          |  |
|----------|---|----|-------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6        | а | i  | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>5</sup> 4s <sup>1</sup> ✓             | 1     | ALLOW 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>1</sup> 3d <sup>5</sup> (i.e. 4s before 3d)<br>ALLOW [Ar]4s <sup>1</sup> 3d <sup>5</sup> OR [Ar]3d <sup>5</sup> 4s <sup>1</sup>                                                                            |  |
|          |   | ii | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>3</sup> ✓                             | 1     | ALLOW [Ar]3d <sup>3</sup><br>ALLOW 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>3</sup> 4s <sup>0</sup> OR [Ar]3d <sup>3</sup> 4s <sup>0</sup>                                                                                                                |  |
|          | b |    | $Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^- \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$    | 3     | ALLOW multiples<br>WATCH for balancing of the equations printed on paper<br>IF printed equations and answer lines have different balancing<br>numbers OR electrons, IGNORE numbers on printed equations (i.e.<br>treat these as working) and mark responses on answer lines only                         |  |
|          |   |    | $4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$                                           |       | <b>NO ECF</b> for overall equation<br>i.e. the expected answer is the <b>ONLY</b> acceptable answer                                                                                                                                                                                                      |  |
|          | С | i  | Ligand substitution ✓                                                                                                         | 1     | ALLOW ligand exchange                                                                                                                                                                                                                                                                                    |  |
|          |   | ii | $\begin{bmatrix} Cr(H_2O)_6 \end{bmatrix}^{3+} + 6NH_3 \longrightarrow \begin{bmatrix} Cr(NH_3)_6 \end{bmatrix}^{3+} + 6H_2O$ | 2     | 1 mark is awarded for each side of equation<br><b>ALLOW</b> equilibrium sign<br><b>ALLOW</b> 1 mark for 2+ shown instead of 3+ on both sides of equation<br><b>ALLOW</b> 1 mark for substitution of 4 NH <sub>3</sub> :<br>$[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$ |  |
|          | d | i  | Donates an electron pair to a metal ion<br>OR forms a coordinate bond to a metal ion ✓                                        | 1     | ALLOW donates an electron pair to a metal<br>ALLOW dative (covalent) bond for coordinate bond                                                                                                                                                                                                            |  |
|          |   | ii | Donates <b>two</b> electron pairs<br>OR forms <b>two</b> coordinate bonds ✓                                                   | 2     | First mark is for the idea of two coordinate bonds                                                                                                                                                                                                                                                       |  |
|          |   |    | Lone pairs on two O atoms ✓                                                                                                   |       | ALLOW lone pair on O and N<br>DO NOT ALLOW lone pairs on COO <sup>-</sup> (could involve C)<br>Second mark is for the atoms that donate the electron pairs<br>Look for the atoms with lone pairs also on response to (d)(iii) and                                                                        |  |

| Question | Expected Answers                                                                                              | Marks      | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question | Expected Answers<br>Forms two optical isomers OR two enantiomers<br>OR two non-superimposable mirror images ✓ | Marks<br>3 | Additional Guidance         IGNORE any charges shown         ALLOW any attempt to show bidentate ligand.<br>Bottom line is the diagram on the left.         1 mark for 3D diagram with ligands attached for ONE stereoisomer.<br>Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper:         Image: Crown of the contain of the cont |
|          |                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Question | Expected Answers                                                                                                | Marks | Additional Guidance                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------|
| e        | N : H : Cr : O<br>11.1/14 : 3.17/1 : 41.27/52 : 44.45/16<br>OR 0.793 : 3.17 : 0.794 : 2.78 ✓                    | 8     | ANNOTATIONS MUST BE USED                                                                             |
|          | <b>A</b> : N <sub>2</sub> H <sub>8</sub> Cr <sub>2</sub> O <sub>7</sub> ✓                                       |       | ALLOW A: (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                              |
|          | lons:<br>NH <sub>4</sub> <sup>+</sup> $\checkmark$<br>Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> $\checkmark$ |       | IF candidate has obtained NH₄CrO₄ for A,<br>ALLOW NH₄ <sup>+</sup><br>DO NOT ALLOW CrO₄ <sup>-</sup> |
|          | <b>B</b> : Cr <sub>2</sub> O <sub>3</sub> ✓                                                                     |       |                                                                                                      |
|          | Correctly calculates molar mass of <b>C</b> = $1.17 \times 24.0 = 28.08 \text{ (g mol}^{-1}) \checkmark$        |       | ALLOW: (relative) molecular mass<br>ALLOW: 28<br>ALLOW: 'C is 28'                                    |
|          | <b>C</b> : N <sub>2</sub> ✓                                                                                     |       |                                                                                                      |
|          | Equation:<br>$(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$                                 |       | <b>ALLOW</b> N <sub>2</sub> H <sub>8</sub> Cr <sub>2</sub> O <sub>7</sub> in equation.               |
|          | Total                                                                                                           | 22    |                                                                                                      |

| Qu | esti | on | Expected Answers                                                                                                                                                                | Marks | Additional Guidance                                                                                                                                                          |
|----|------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | а    | i  | $H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark\checkmark$                                                                                                                 | 2     | All other multiples score 1 mark<br>e.g. $\frac{1}{2} H_2 O_2 \longrightarrow \frac{1}{2} O_2 + H^+ + e^-$<br>$5H_2 O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$                |
|    | b    |    | Marks are for correctly calculated values.<br>Working shows how values have been derived.                                                                                       |       | ANNOTATIONS MUST BE USED                                                                                                                                                     |
|    |      |    | $n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{1000} = 4.69 \times 10^{-4} \text{ (mol)} \checkmark$                                                                            |       | <b>DO NOT ALLOW</b> $4.7 \times 10^{-4}$                                                                                                                                     |
|    |      |    | $n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$                                                                                   |       | <b>ALLOW</b> 1.173 x $10^{-3}$ OR 1.17 x $10^{-3}$ (i.e. 3 significant figures upwards)<br><b>ALLOW</b> by <b>ECF</b> : $5/2 \times$ ans above                               |
|    |      |    | $n(H_2O_2)$ in 250 cm <sup>3</sup> solution<br>= 10 × 1.1725 × 10 <sup>-3</sup> = 1.1725 x 10 <sup>-2</sup> (mol) $\checkmark$                                                  |       | <b>ALLOW</b> by <b>ECF</b> 10 × ans above<br><b>ALLOW</b> concentration $H_2O_2 = 0.0469$ mol dm <sup>-3</sup>                                                               |
|    |      |    | concentration in g dm <sup>-3</sup> of original H <sub>2</sub> O <sub>2</sub><br>= 40 × 1.1725 × 10 <sup>-2</sup> × 34 = 15.9 (g dm <sup>-3</sup> ) $\checkmark$                | 4     | <b>ALLOW</b> by <b>ECF</b> $40 \times n(H_2O_2) \times 34$<br><b>ALLOW</b> 0.0469 x 10 x 34 = 15.9 g dm <sup>-3</sup> $\checkmark$                                           |
|    |      |    |                                                                                                                                                                                 |       | <b>ALLOW</b> two significant figures, 16 (g dm <sup><math>-3</math></sup> ) up to calculator value of 15.946 g dm <sup><math>-3</math></sup>                                 |
|    |      |    | $n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol) }\checkmark$<br>volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$ | 2     | ALLOW 0.028 dm <sup>3</sup> OR 0.02814 dm <sup>3</sup><br>ALLOW 28 cm <sup>3</sup> OR 28.14 cm <sup>3</sup><br>Value AND units required<br>DO NOT ALLOW 0.03 dm <sup>3</sup> |
|    |      |    |                                                                                                                                                                                 |       | <b>ALLOW</b> by <b>ECF</b> : $24.0 \times$ calculated moles of O <sub>2</sub> (2 significant figures up to calculator value)                                                 |
|    |      |    | Total                                                                                                                                                                           | 8     |                                                                                                                                                                              |

## Appendix 1

Extra guidance for marking atypical responses to **5e(i)** and **5e(ii)** 

| Qu | esti | on | Expected Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mark | Additional Guidance                                                                                                                                                                                                      |
|----|------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | e    | i  | TOTAL ENTROPY APPROACH:<br>ALL MARKS AVAILABLE<br>Unless otherwise stated, marks are for correctly<br>calculated values.<br>Working shows how values have been derived.<br>$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ $= -200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within expression below) $\checkmark$                                             |      | ANNOTATIONS MUST BE USED<br>NO UNITS required at this stage<br>IGNORE units                                                                                                                                              |
|    |      |    | $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ $\Delta S_{\text{surroundings}} = -\frac{\Delta H}{T}$ $OR  \Delta S_{\text{total}} = \Delta S_{\text{system}} - \frac{\Delta H}{T}$ $OR  \Delta S_{\text{total}} = -0.200 - \frac{-92}{298}$ $OR  \Delta S_{\text{total}} = -200 - \frac{-92000}{298} \checkmark$ $= 0.109 \text{ kJ (K^{-1} \text{ mol}^{-1}) \text{ OR } 109 \text{ J (K}^{-1} \text{ mol}^{-1}) \checkmark$ Feasible when $\Delta S_{\text{total}} > 0 \checkmark$ | 5    | ALLOW 0.109 kJ OR 109 J<br>IF 25°C has been used instead of 298 K, correctly calculated<br>$\Delta S_{\text{total}}$ values are = 3.48 kJ K <sup>-1</sup> mol <sup>-1</sup> OR 3,480 J K <sup>-1</sup> mol <sup>-1</sup> |

| Qu | esti | on | Expected Answer                                                                                                                                                                                                                                                                                                       | Mark | Additional Guidance                                                                                                                                                        |
|----|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | e    | i  | MAX/MIN TEMPERATURE APPROACH:<br>5 MARKS MAX AVAILABLE<br>Unless otherwise stated, marks are for correctly<br>calculated values.<br>Working shows how values have been derived.                                                                                                                                       |      | ANNOTATIONS MUST BE USED<br>This candidate has not answered the question but many<br>marks are still available.                                                            |
|    |      |    | $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$<br>= (2 × 192) - (191 + 3 × 131) $\checkmark$<br>= -200 (J K <sup>-1</sup> mol <sup>-1</sup> ) <b>OR</b> -0.200 (kJ K <sup>-1</sup> mol <sup>-1</sup> ) $\checkmark$<br>Use of 298 K (could be within $\Delta G$ expression below) $\checkmark$ |      | NO UNITS required at this stage<br>IGNORE units                                                                                                                            |
|    |      |    | $\Delta G = \Delta H - T\Delta S$ OR When $\Delta G = 0$ , $0 = \Delta H - T\Delta S$ ; OR $T = \frac{\Delta H}{\Delta S} = \frac{-92}{-0.200}$ OR $T = \frac{\Delta H}{\Delta S} = \frac{-92000}{-200} \checkmark$ $= 460 \text{ K} \checkmark$ $= 187 ^{\circ}\text{C} \text{ (use of 298) } \checkmark$            |      |                                                                                                                                                                            |
|    |      |    | The condition $\Delta G = 0$ because temperature at which $\Delta G = 0$ is the maximum temperature for feasibility <b>AND</b> justification for the being the maximum $\checkmark$                                                                                                                                   |      | By this approach, the calculated temperature is the switchover<br>between feasibility and non-feasibility but it cannot be assumed<br>that this is the maximum temperature |

Mark Scheme

| Question | Expected Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark | Additional Guidance                                                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 e ii   | As the temperature increases,<br>$\Delta H/T$ becomes <b>less</b> negative<br><b>OR</b> $\Delta H/T$ becomes <b>more</b> negative than $\Delta S$ (system)<br><b>OR</b> $\Delta H/T$ becomes <b>less</b> significant<br><b>OR</b> $\Delta S$ (surroundings) becomes <b>less</b> significant<br><b>OR</b> $\Delta S$ (system) > $\Delta H/T$<br><b>OR</b> $\Delta S$ (system) > $\Delta S$ (surroundings) $\checkmark$<br>Eventually $\Delta S$ (total) becomes <b>negative</b> $\checkmark$ | 2    | ALLOW $\Delta H/T > \Delta S_{system}$ (i.e. assume no sign at this stage)<br>ALLOW $-\Delta H/T$ becomes more positive<br>ALLOW $-\Delta H/T$ increases |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

